期刊文献+

左拟正规带的自由积 被引量:1

Free product of left quasi-normal bands
下载PDF
导出
摘要 证明了左拟正规带在半群范畴中的自由积的极大左拟正规带同态象,同构于它们在左拟正规带范畴中的自由积,从而证明了左拟正规带自由积的存在性。还建立了交换自由积的概念,并考察了半格自由积与交换自由积的关系。 It is proved that the maximal left quasi-normal band homomorphic image of the free product of right quasi-normal bands in the semi-group categrory is isomorphic to their free product in the left quasi-normal band category. Then, the existence of the free product in left quasinormal band was proved. Finally, the concept of commutative free product was given, and the relationship between semi-lattice free product and commutative free product was examined.
作者 毕晓冬
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第6期83-86,共4页 Journal of Shandong University(Natural Science)
关键词 左拟正规带 半格 自由积 范畴 交换自由积 left quasi-normal band semi-lattice free product category commutative free product
  • 相关文献

参考文献4

  • 1PETRICH M. Lecture in semigroups[M]. London: Wiley, 2001.
  • 2MAGNUS W, KARRASS A, SOLITAR D. Combinatial group theory[ M]. New York: Wiley-Interscience, 2006.
  • 3HIGGINS P M. Techniques of semigroup theory[M]. Oxford: Oxford University Press, 1992.
  • 4HOWIE J M. Fundamentals of semigroup theory[ M]. Oxford: Oxford University Press, 1995.

同被引文献5

  • 1PETRICH M, Lecture in semigroups[M]. London: Wliley, 2001.
  • 2GRILLET P A. The tensor product of semigroups[J]. Trans Amer Math Soc, 1969, 138:267-280.
  • 3HOWIE J M. Fundamentals of semigroup theory[ M]. Oxford: Oxford University Press, 1995.
  • 4SEIDE M. Tensor product systems of CP-semigroup[J]. Journal of Mathematical Sciences, 2001, 106:2890-2895.
  • 5WEBER A. Tensor product of recurrent hypercyclic semigroups[ J]. Journal of Mathematical Analysis and Applications, 2009, 351:603- 606.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部