期刊文献+

基于DEM黄土丘陵沟壑区不同尺度流域地貌现状及侵蚀产沙趋势 被引量:11

Study on Topographic Evolution and the Eroding Trend in Hilly Loess Areas,North China
下载PDF
导出
摘要 基于流域DEM对各个集水区进行划分,提取流域沟壑长度、平均高程、平均坡度等信息,并运用EXCEL、SPSS对这些信息进行分析处理,计算出沟壑密度、流域相对高程、面积-高程积分值,并结合流域侵蚀产沙数据以及实地考察情况,借助地貌学的相关理论,分析流域不同区域内、不同尺度流域地貌发育及侵蚀产沙情况。研究发现,流域左右两岸支流的发育数目、形状受邻近流域的影响;面积-高程积分值的大小能反应流域的地貌现状与侵蚀趋势,蛇家沟与岔巴沟的面积-高程积分值分别为0.5475、0.4637,但面积-高程积分值的大小及变化趋势还与流域最低点是否达到基岩有关;沟壑发育分为长度发育与宽度发育两个阶段,沟壑密度只是衡量地貌的一个重要指标,沟壑密度对流域侵蚀产沙的影响与沟壑的发育阶段有关;一般情况下产沙模数的大小与流域面积大小没有直接的关系,主要看流域内的地貌的发育阶段。 Based on digital elevation data of basin, catchments have been divided. According to extracting terrain information ( gully length, mean elevation, mean gradient etc. ) of basin and analyzing with the software EXCEL and SPSS, gully density, relative elevation of basin and area-elevation integral are calculated. Then, combining with erosion data and investigation, physiognomy development and erosion in regions and scales has been analyzed. It' s found that the basic developed shape, both banks branch growth number is influenced by nearby basins; The areaelevation integral value can respond the present physiognomy situation and the erosion tendency in basin, it also relate with that whether the lowest point of basin reach the bedrock ; The gully growth can be divided into two stages : the length growth and the width growth. The gully density is just an important physiognomy indicator whose impact on erosion and sediment yield in basin is relate with the stage of gully growth. The sediment yield modulus is mainly relate with gully growth stage and there is no direct relation with basin area.
出处 《山地学报》 CSCD 北大核心 2008年第3期347-355,共9页 Mountain Research
基金 国家基金委员会重点基金项目(40635027) 国家重点基础研究发展计划973项目(2007CB407207)~~
关键词 流域发育阶段 侵蚀产沙 尺度 面积-高程积分 geomorphologic evolution erosion and sediment yield spatial scale the areaelevation integral value
  • 相关文献

参考文献16

  • 1Wilson J P, Gallant J C. Terrain Analysis: Principles and Applications[ M], New York:John Wiley & Sons, 2000.
  • 2Davis W M. The geographical cycle[J ]. Geogr. J, 1899, 14:481- 501
  • 3Strahler A N. Hyosomotric analysis of erosional topography [ J ] . Bull. Geol. Soc. Am. , 1952, (63) :25 - 34
  • 4姜鲁光,张祖陆.鲁中南山地流域地貌的高程—面积分析[J].山东师范大学学报(自然科学版),2003,18(1):63-66. 被引量:18
  • 5孙希华,姚孝友,周虹,黎家作,李平.基于DEM的山东沂沭泗河流域地貌演化与水土流失研究[J].水土保持通报,2005,25(4):24-28. 被引量:19
  • 6Favis-Mortlock D T, Quinton J N, Dickinson W T. The GCTE validation of soil erosion models for global change studies [ J ]. Journal of Soil and Water Conservation, 1996,51 (5) :397 - 403
  • 7Kirkby M J, Cox N J. A climate index for soil erosion potential ( CSEP), Including seasonal factors [ J ]. Catena, 1995,25 : 333-352
  • 8Kirkby M J, Imeson A C, Berkamp G, et al. Scaling up processes and models from the field plot to the watershed and regional areas [ J]. Journal of Soil and Water Conservation. 1996,54(3 ) :391 - 396
  • 9Boardman J, Favis-Mortlock D T. Modelling soft erosion-by water: some conclusions[ A ]. In : Modeling Soil Erosion by Water [ C ]. NATOASI Series, Springer, 1998.
  • 10Kirby M J, Mcmahon M L. MEDRUSH and the Catsop basin--the lessons learned [ J ]. Catena, 1999,37:495 - 506

二级参考文献35

共引文献65

同被引文献175

引证文献11

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部