期刊文献+

苹果质地品质近红外无损检测和指纹分析 被引量:34

Nondestructive measurement and fingerprint analysis of apple texture quality based on NIR spectra
下载PDF
导出
摘要 为了探索近红外光谱快速无损检测苹果质地品质的方法,采集240个苹果样本的近红外光谱(波长800~2500nm),通过解析光谱图和进行不同的预处理,利用偏最小二乘法(PLS)和多元线性回归(MLR)建立回归模型和确定特征指纹图谱。基于波长范围为1300~2500nm,PLS结合多元散射校正(MSC)所建模型的预测效果最好,硬度模型的预测标准偏差(RMSEP)和决定系数(R2)分别为0.226kg/cm2、96.52%,脆度模型的RMSEP和R2分别为0.243kg/cm2、97.15%。用权重法基于PLS模型选择的硬度特征波长为1657、1725、1790、2455、1929、2304nm,脆度特征波长为1613、1725、1895、2304、2058、2087、2396nm,经MLR模型检验,特征波长与苹果的硬度和脆度有很高的相关性,硬度的RMSEP和R2分别为0.271kg/cm2、90.30%,脆度的RMSEP和R2分别为0.304kg/cm2、91.64%。结果表明,PLS模型和特征指纹光谱均能准确预测苹果的质地品质,为苹果质地品质的评价提供了快速、直观、简便、可行的新方法。 A rapid and nondestructive way to measure texture of apple was put forward based on NIR spectra and the relationships between NIR spectra and firmness and crunchiness were developed. The NIR spectra were acquired from 240 samples of apples with the wavelength from 800 to 2500nm. The multivariable analyses including partial least squares (PLS) and multiple linear regressions (MLR) were conducted to build the regression models and select the fingerprint spectra of firmness and crunchiness. The excellent models with high coefficient of determination (R2: 96.52%; 97.15 % ) and low RMSEP (0.226 kg/cm^2; 0.243 kg/cm^2) were obtained by PLS+MSC models based on wavelength from 1300 to 2500 nm. The loading weights from PLS model were found to be the sensitive firmness wavelengths (1657, 1725, 1790, 2455, 1929 and 2304 nm) and crunchiness wavelengths (1613, 1725, 1895, 2304, 2058, 2087 and 2396 nm). These wavelengths were strongly related with apple's texture(r: 0.921, 0.957) by MLR models evaluated. The results indicate that the PLS models and the fingerprint spectra can predict apple texture quality accurately, A new method which can evaluate apple texture quality rapidly, visually, simply and feasibly was developed.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2008年第6期169-173,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家“十一五”科技攻关项目(2006BAK02A24)
关键词 苹果 脆度 硬度 近红外光谱 无损检测 指纹图谱 apple firmness crunchiness NIR spectra nondestructive measurement fingerprint
  • 相关文献

参考文献16

  • 1陈斌,王豪,林松,赵杰文.基于相关系数法与遗传算法的啤酒酒精度近红外光谱分析[J].农业工程学报,2005,21(7):99-102. 被引量:49
  • 2刘燕德,应义斌.苹果糖分含量的近红外漫反射检测研究[J].农业工程学报,2004,20(1):189-192. 被引量:29
  • 3He Yong, Li Xiaoli, Shao Yongni. Quantitative analysis of the varieties of apple using near infrared spectroscopy by principal component analysis and BP model[J]. Lecture Notes in Artificial Intelligence, 2005, 38 (9):1053- 1056.
  • 4Liu Yande, Ying Yibing. Use of FT-NIR spectrometry in noninvasive measurements of internal quality of Fuji apples[J]. Pastharvest biology and technology, 2005, 37: 65-71.
  • 5Lu R F, Guyer D E, Beaudry R M. Determination of firmness and sugar content of apples using near-infrared diffuse reflectance [J]. Journal TextureStudies, 2000, 31: 615-630.
  • 6Peng Y K, Lu R F. Modeling multi-spectral scattering profiles for prediction of apple fruit firmness[J]. Trans of the ASAE, 2005, 48(1) : 235-242.
  • 7傅霞萍,应义斌,刘燕德,陆辉山.水果坚实度的近红外光谱检测分析试验研究[J].光谱学与光谱分析,2006,26(6):1038-1041. 被引量:66
  • 8陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术[M].北京:中国石化出版社,2004.
  • 9Li Xiaioli, He Yong, et al. Nondestructive measurement and fingerprint analysis of soluble solid content of tea soft drink based on Vis/NIR spectroscopy[J]. Journal of Food Engineering, 2007, 82: 316-323.
  • 10黄定轩,武振业.一类加权连续属性的多变量决策树构造方法[J].系统工程理论方法应用,2005,14(1):80-83. 被引量:8

二级参考文献82

  • 1褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:565
  • 2洪家荣,丁明峰,李星原,王丽薇.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474. 被引量:92
  • 3夏俊芳,李小昱,李培武,王为,丁小霞.基于小波消噪柑橘内部品质近红外光谱的无损检测[J].华中农业大学学报,2007,26(1):120-123. 被引量:11
  • 4金同铭,崔洪昌.苹果中蔗糖、葡萄糖、果糖、苹果酸的非破坏检测[J].华北农学报,1997,12(1):91-96. 被引量:23
  • 5郭立颖 陈世铭 张文宏.洋香瓜糖度检测之研究(一)-影像纹理分析法[J].[台湾]农业机械学刊,1998,7(1):75-86.
  • 6Hong J W. AEI: an extension approximate method for general covering problem[J]. Int J of Computer and Information Science, 1985,14 (6) :421 - 437.
  • 7Lucey J A,Johnson M E,Horne D S.Perspectives on the basis of the rheology and texture properties of cheese[J].Journal of Dairy Science,2003,86(9):2725—2743.
  • 8Szczesniak A S,Ilker R.The meaning of textural characteristics-juiciness in plant foodstuffs[J].Journal of Texture Studies,1988,19:61—78.
  • 9Apostolopulos C,Brennan J G.Identification of the main textural characteristics of canned peaches and the effects of processing variables[J].Journal of Texture Studies,1984,25:383—402.
  • 10Muramatsu N,Takahara T,Kojima K,et a1.Relationship between texture and cell wall polysaccharides of fruit flesh in various species of citrus[J].Hortscience,1996,31(1):114—116.

共引文献679

同被引文献442

引证文献34

二级引证文献454

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部