期刊文献+

应用于矢量量化的改进粒子群优化算法 被引量:2

An Improved Particle Swarm Optimization Algorithm for Vector Quantization
原文传递
导出
摘要 针对粒子群优化算法(PSO)应用于矢量量化时,最优粒子对与其对应维度距离较大的粒子缺乏有效指导问题,提出适用于矢量量化的改进粒子群优化算法(IPSO_VQ).该算法通过建立粒子与榜样粒子的维度映射关系,以基于映射关系的维度学习代替对应维度学习关系,使粒子相关维度间的学习有一定相关性,增强算法局部搜索能力.同时,借鉴广泛学习粒子群优化(CLPSO)算法中的广泛学习思想,并将其应用于基本 PSO 中的全局最优位置学习部分,通过对多个粒子的广泛学习,增加种群的多样性.实验结果表明该算法有效避免种群早熟收敛,从而使解码恢复图像获得更高的主客观质量. An improved particle swarm optimization algorithm for vector quantization is proposed. The Concept of comprehensive learning in comprehensive learning particle swarm optimization (CLPSO) is adopted and merged into the learning strategies of original particle swarm optimization (PSO). The mapping between a particle and its example particle is built. And the particle can learn from the mapped dimensions in the example particle instead of the corresponding dimensions. Thus, the local search ability is greatly enhanced as well as the diversity of the swarm is effectively maintained. The experimental results show that the algorithm can effectively alleviate the problem of premature convergence and obtain good reconstruction image quality.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期285-289,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60472085) 陕西省自然科学基金(No.2006F04)资助项目
关键词 矢量量化 码书设计 进化计算 粒子群优化(PSO) Vector Quantization, Codebook Design, Evolutionary Computation, Particle Swarm Optimization (PSO)
  • 相关文献

参考文献13

  • 1Linde Y, Buzo A, Gray R. An Algorithm for Vector Quantizer Design. IEEE Trans on Communications, 1980, 28 ( 1 ) :84 - 95
  • 2Vasuki A, Vanathi P T. A Review of Vector Quantization Techniques. Potentials, 2006, 25(4): 39-47
  • 3de Stefano C, D' Elia C, Marcelli A, et al. Improving Dynamic Learning Vector Quantization// Proc of the IEEE International Conference on Pattern Recognition. Hong Kong, China, 2006:804 - 8O7
  • 4Chen Qian, Yang Jiangang, Gou Jin, et al. Image Compression Method Using Improved PSO Vector Quantization// Proc of the International Conference on Advances in Natural Computation. Changsha, China, 2005:490-495
  • 5Han C C, Chen Y N, Lo C C. A Novel Approach for VQ Using a Neural Network, Mean Shift, and Principal Component Analysis// Proc of the Intelligent Vehicles Symposium. Tokyo, Japan, 2006: 244 - 249
  • 6Kennedy J, Everhart R. Particle Swarm Optimization// Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995 : 1942 - 1948
  • 7Chen C Y, Ye F. Particle Swarm Optimization Algorithm and Its Application to Clustering Analysis//Proc of the IEEE International Conference on Networking, Sensing and Control. Taipei, China, 2004, Ⅱ: 789 -794
  • 8Liang J J, Qin A K, Suganthan P N, et al. Particle Swarm Optimization Algorithms with Novel Learning Strategies// Proc of the IEEE International Conference on Systems, Man and Cybernetics. Ottawa, Canada, 2004,Ⅳ: 3659 - 3664
  • 9Xu Shenheng, Rahmat-Samii Y. Boundary Conditions in Particle Swarm Optimization Revisited. IEEE Trans on Antennas and Propagation, 2007, 55 (3) : 760 - 765
  • 10刘宇,覃征,史哲文.简约粒子群优化算法[J].西安交通大学学报,2006,40(8):883-887. 被引量:13

二级参考文献20

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:199
  • 3Kennedy J,Eberhart R.Swarm Intelligence[M].San Francisco:Morgan Kaufmann Publishers,2001.
  • 4Boeringer D W,Werner D H.Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis[J].IEEE Trans on Antennas and Propagation,2004,52(3):771-779.
  • 5Parsopulos K E,Vrahatis M N.Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization[J].Natural Computing,2002,1(2-3):235-306.
  • 6Liu H B,Li B,Wang X K,et al.Survival Density Particle Swarm Optimisation for Neural Network Training[A].Lecture Notes in Computer Science[C].Springer-Verlag,2004,3173:332-337.
  • 7Sousa T,Silva A,Neves A.Particle Swarm Based Data Mining Algorithms for Classification Tasks[J].Parallel Computing,2004,30(5-6):767-783.
  • 8Clerc M,Kennedy J.The Particle Swarm-Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 9Frans van den Bergh.An Analysis of Particle Swarm Optimizers[D].Pretoria:University of Pretoria,2001:78-85.
  • 10Mahfouf M,Chen M Y,Linkens D A.Adaptive Weighted Swarm Optimization for Multiobjective Optimal Design of Alloy Steels[A].Lecture Notes in Computer Science[C].Springer-Verlag,2004,3242:762-771.

共引文献73

同被引文献25

  • 1李霞,罗雪晖,张基宏.基于人工蚁群优化的矢量量化码书设计算法[J].电子学报,2004,32(7):1082-1085. 被引量:16
  • 2佘春东,孙世新,范植华,王茂芝,唐剑,邓洪勤.一种高效的基于模拟退火的LBG算法[J].小型微型计算机系统,2005,26(2):218-221. 被引量:7
  • 3唐熙曾,姜建新.矢量量化在语音识别中的应用[J].西北大学学报(自然科学版),1989,19(4):43-46. 被引量:1
  • 4陈善学,李方伟.矢量量化与图像处理[M].北京:科学出版社,2009:122-125.
  • 5Lu Qiang.K-means optimal clustering algorithm based on hybrid genetic technique[J].Joumal of East China University of Science and Technology, 2005,31 (2) : 219-222.
  • 6Karaboga D.An idea based on honey bee swarm for numerical .optimization, Technical Report-TR06[R].Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 7Dervis K, Bahriye A.A comparative study of Artificial Bee Colony algorithm[J] .Applied Mathematics and Computation, 2009,214 : 108-132.
  • 8Zhu Guopu,Kwong Sam.Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217: 3166-3173.
  • 9Karaboga N.A new design method based on artificial bee colony algorithm for digital IlR filters[J].Joumal of The Franklin Institute,2009,346: 328-348.
  • 10Rao R S, Narasimham S, Ramalingaraju M.Optimization of distribution network configuration for loss re- duction using artificial bee colony algorithm[J].International Journal of Electrical Power and Energy Sys- tems Engineering (IJEPESE), 2008 ( 1 ) : 116-122.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部