期刊文献+

基于PSO的变结构变时滞自校正控制 被引量:1

PSO-Based Self-Tuning Control for Time-Varying Delay and Variable Structure System
原文传递
导出
摘要 针对变结构、变时滞被控对象,将粒子群优化(PSO)算法与广义最小方差相结合,采用实时自校正过程对其进行控制,提出基于 PSO 自校正控制器算法.该算法应用隐式辨识方式,可减少辨识计算量,通过跟踪误差来改变辨识精度.以工业上典型的一阶、二阶和三阶系统的结构变化并伴随着有时滞突变的复杂被控对象进行仿真,并和基于最小二乘的传统自校正控制方法比较得知,在运用 PSO 自校正控制器的控制下,系统输出量与期望输出之间的方差趋于更小,控制跟随性和鲁棒性均较好.仿真结果表明该自校正控制器的有效性与应用价值. A design method is presented for the self-tuning control algorithm in a time-varying delay and variable structure system. A self-tuning regulator is optimized by the particle swarm optimization (PSO) algorithm, combined with generalized minimum variance. Using an implicit identification, the method can track the errors of the system to increase the precision and decrease the computational burden. It is adaptable for the typical industrial process control, especially for time-varying and large time-delay models. Results of simulation and comparison show its advantages in robust and tracing precision.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期310-316,共7页 Pattern Recognition and Artificial Intelligence
基金 浙江省自然科学基金资助项目(No.Y107010)
关键词 粒子群优化(PSO) 自校正控制 变时滞 变结构 Particle Swarm Optimization (PSO) , Self-Tuning Control, Time-Varying Delay, Variable Structure System
  • 相关文献

参考文献11

  • 1Astrom K J, Wittenmark B. On Self-Tuning Regulators. Automatica, 1973, 9(2) : 185 - 199
  • 2Kirecci A, Eker I, Dulger L C. Self-Tuning Control as Conventional Method. Electrical Engineering, 2003, 85(2): 101 -107
  • 3Clarke D W, Gawthrop P J. Self-Tuning Controller. Proc of the IEEE, 1975, 122(9): 929-934
  • 4Dangprasert P, Avatchanakorn V. Genetic Algorithms Based Self- Tuning Regulator// Proc of the IEEE International Conference on Evolutionary Computation. Perth, Australia, 1995 : 444 - 449
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization//Proc of the IEEE International Conference on Neural Network. Perth, Australia, 1995:1942 - 1948
  • 6曾建潮,崔志华.微粒群算法.北京:科学出版社,2005
  • 7林卫星,张惠娣,刘士荣,钱积新.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):75-79. 被引量:22
  • 8Lin W, Liu P X. Hammerstein Model Identification Based on Bacterial Foraging. Electronics Letters, 2006, 42(23) : 1332 - 1334
  • 9Shi Yuhui, Eberhart R. Modified Particle Swarm Optimizer//Proc of the IEEE International Conference on Evolutionary Computation. Anchorage, USA, 1998:69-73
  • 10Kennedy J. The Particle Swarm: Social Adaptation of Knowledge // Proc of the IEEE International Conference on Evolutionary Com- putation. Indianapolis, USA, 1997 : 303 - 308

二级参考文献13

  • 1丁锋,谢新民.系统参数和状态联合估计[J].控制与决策,1994,9(3):223-225. 被引量:11
  • 2丁锋,谢新民,方崇智.时变系统辨识的多新息方法[J].自动化学报,1996,22(1):85-91. 被引量:47
  • 3丁锋.多变量系统的辅助模型辨识方法的收敛性分析[J].控制理论与应用,1997,14(2):192-200. 被引量:28
  • 4Shi Y, Eberhart R C. Parameter selection in particle swarm optimization[A]. Evolutionary Programming VII: Proceedings of the Seventh Annual Conferenceon Evolutionary Programming, Springer-Verlag,New York,1998;591 - 600.
  • 5Ljung L. System identification theory for the user[M]. 2nd ed. Prentice Hall PTR. ,1999.
  • 6Giannakis G B, Serpedin E. A bibliography on nonlinear system identification [J]. Signal Processing,2001,81(3):533- 580.
  • 7Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995 : 39 - 43.
  • 8Kennedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco:Morgan Kaufmann Publishers, 2001.
  • 9丁锋,清华大学学报,1992年,32卷,4期,100页
  • 10方崇智,过程辨识,1988年

共引文献29

同被引文献13

  • 1何大阔,王福利,贾明兴.遗传算法初始种群与操作参数的均匀设计[J].东北大学学报(自然科学版),2005,26(9):828-831. 被引量:59
  • 2谷俊杰,米翠丽.基于多模型的内模控制及其在电厂过热汽温中的应用[J].华北电力大学学报(自然科学版),2006,33(2):83-86. 被引量:11
  • 3刘维.超超临界机组控制方法与应用[M].北京:中国电力出版社,2010:175.
  • 4GU Junjie,ZHANG Yanjuan,GAO Darning.Application of nonlinearPID controller in main steam temperature control [ C]// APPEEC2009.[S.l.]:IEEE,2009:27-31.
  • 5ZHU Qidan,ZHANG Jingqiao,WANG Jian.Design of fuzzy andCMAC parallel controller based on GA for main steam pressurein supercharged boiler [C] // Chinese Control and DecisionConference, CCDC 2008.Yantai, China:IEEE, 2008:4934-4938.
  • 6KIRECCI A,EKEH I,DULGER L C.Self-tuning control asconventional method [ J ].Electrical Engineering,2003 ,85 (2):101-107.
  • 7XU C,SHIN Y.A self-tuning fuzzy controller for a class of multi-input multi-output nonlinear systems [J], Engineering Applicationsof Artificial Intelligence,2011,24(2):238-250.
  • 8ALTINTEN A,KETEVANUOGLU F,ERDAGON S,et al.Self-tuning PID control of jacketed batch polystyrene reactor usinggenetic algorithm[J].Chemical Engineering Journal ,2008,138:490-497.
  • 9KUSUM D,MANOJ T.A new crossover operator for real codedgenetic algorithms[J].Applied Mathematics and Computation,2007,188(1):895-911.
  • 10YALCINOZ T,ALTUN H.Environmentally constrained economicdispatch via a genetic algorithm with arithmetic crossover[C] //2002 IEEE AFRICON.6th AFRICON Conference.[S.l.]:IEEE,2002:923-928.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部