期刊文献+

基于HMM的无溢出高维样本集正态归整方法

An HMM Based Normality Processing Method without Overflow for High Dimensional Sample Set
原文传递
导出
摘要 提出一种使用卡方图对高维特征向量样本集进行正态评估,并通过平方根变换处理,使样本集更接近正态分布的方法,称为无溢出正态归整方法.该方法解决高维特征样本对隐马尔柯夫模型(HMM)输出概率的溢出问题,其可行性在 CED-WYU(1.0)及 Cohn-Kanade(CMU)表情序列库上得到验证.利用连续 HMM 进行的基于光流特征的非特定人脸表情识别实验,采用正态归整得到更好的结果. Aiming at the overflow of the hidden Markov model (HMM) observation probability, a method is proposed, called Normality Processing. Firstly, the chi-square plot is used to test normality of the sample set, the transformation of square root is performed. The feasibility of the proposed method is validated on the expression sequences database of CED-WYU (1.0) and Cohn-Kanade (CMU). The person-independent expression recognition experiment is made with continuous HMM based on the optical flow features and a better result is obtained when the normality processing is used.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期363-368,共6页 Pattern Recognition and Artificial Intelligence
基金 广东省自然科学基金资助项目(No.032356,07010869)
关键词 隐马尔柯夫模型(HMM) 卡方图 正态性 表情识别 Hidden Markov Model (HMM), Chi-Square Plot, Normality, Expression Recognition
  • 相关文献

参考文献12

  • 1Rabiner L R. A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition. Proc of the IEEE, 1989, 77 (2) : 257 - 286
  • 2Otsuka T, Ohya J. Recognizing Multiple Persons' Facial Expression Using HMM Based on Automatic Extraction of Significant Frames from Image Sequences // Proc of the International Conference on hnage Processing. Barbara, USA, 1997, Ⅲ:546-549
  • 3Ben-Yishai A, Brushtein D. A Discriminative Training Algorithm for Hidden Markov Models. IEEE Trans on Speech and Audio Processing, 2004, 12(3) : 204 -217
  • 4He Q H, Kwong S, Hong Q Y. Adaptation of Hidden Markov Models Using Maximum Model Distance Algorithm. IEEE Trans on Systems, Man and Cybernetics, 2004, 34 (2) : 270 - 276
  • 5Aleksic P S, Katsaggelos A K. Automatic Facial Expression Recognition Using Facial Animation Parameters and Multi- Stream HMMs. IEEE Trans on Information Forensics and Security, 2006, 1 ( 1 ) : 3 -11
  • 6何强,毛士艺,张有为.多观察序列连续隐含马尔柯夫模型的无溢出参数重估[J].电子学报,2000,28(10):98-101. 被引量:12
  • 7Looney S W, Jr Gulledge T R. Use of the Correlation Coefficient with Normal Probability Plots. The American Statistician, 1985, 39 (1): 75-79
  • 8Johnson R A, Wichem D W. Applied Multivariate Statistical Analysis. Upper Saddle River, USA: Prentice-Hall, 1982
  • 9Tang Jinghai, Ying Zilu, Zhang Youwei. The Contrast Analysis of Facial Expression Recognition by Human and Computer// Proc of the International Conference on Signal Processing. Beijing, China, 2006, Ⅲ: 1649 - 1653
  • 10Cohn J F, Zlochower A J, Lien J T, et al. Feature-Point Tracking by Optical Flow Discriminates Subtle Differences in Facial Expression // Proc of the IEEE International Conference on Automatic Face and Gesture Recognition. Nara, Japan, 1998,Ⅲ: 396 -401

二级参考文献2

  • 1何强,博士学位论文,2000年
  • 2杨行峻,语音信号数字处理,1995年

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部