期刊文献+

基于神经网络的时间序列相似模式发现方法 被引量:2

Method for Similar Pattern Discovery in Time Series Based on Neural Network
原文传递
导出
摘要 基于无监督学习神经网络聚类原理,提出一种时间序列相似模式发现方法.通过快速离散余弦变换将序列映射到相应的特征模式空间,不但实现维数简约,而且克服传统神经网络不能处理过程序列的局限性.分析人工神经网络作为相似性度量模型的优越性,用"黑箱式"的网络权值代替传统的距离度量方法,并在此基础上实现相似模式的全部配对发现算法.对实际飞行数据仿真结果表明该方法的正确性,同时具有多尺度特性,可有效反映不同分辨率下序列间的相似程度. According to the unsupervised neural network theory of clustering, a method is proposed for similar pattern discovery in time series database. Aiming at the poor capability of the neural network for handling the time change process sequence, the original data are mapped into the feature pattern space by means of fast discrete cosine transform (FDCT) for dimension reduction. The advantages of artificial neural network as similarity measurement model are analyzed and the range query algorithm is presented. The simulation results show that the proposed algorithm has the property of multi-scale, and compared with Euclidean distance and Slop distance, it can reflect similarities of time series under various resolutions.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期401-405,共5页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2006AA701409) 陕西省自然科学基础研究计划项目(No.2005f52)资助
关键词 离散余弦变换 人工神经网络 时间序列 相似模式发现 多尺度 Discrete Cosine Transform, Artificial Neural Network, Time Series, Similar Pattern Discovery, Multi-Scale
  • 相关文献

参考文献10

  • 1Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search in Sequence Databases// Proc of the 4th International Conference on Foundations of Data Organization and Algorithms. Chicago, USA, 1993 : 69 - 84
  • 2Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases // Proc of the 9th International Conference on Tools with Artificial Intelligence. Newport Beach, USA, 1997 : 578 -584
  • 3Chan K P, Fu A W. Efficient Time Series Matching by Wavelets// Proc of the 15th International Conference on Data Engineering. Sydney, Australia, 1999:126 - 133
  • 4Keogh E, Chu S, Hart D, et al. An Online Algorithm for Segmenting Time Series /! Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001 : 289 -296
  • 5蒋嵘,李德毅.基于形态表示的时间序列相似性搜索[J].计算机研究与发展,2000,37(5):601-608. 被引量:34
  • 6郑斌祥,席裕庚,杜秀华.利用反馈的时序模式挖掘算法研究[J].控制与决策,2002,17(5):527-531. 被引量:2
  • 7李爱国,覃征.大规模时间序列数据库降维及相似搜索[J].计算机学报,2005,28(9):1467-1475. 被引量:20
  • 8张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274. 被引量:36
  • 9何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44. 被引量:143
  • 10Beckmann N, Kriegel H P, Schneider R, et al. The R^* -Tree: An Efficient and Robust Access Method for Points and Rectangles// Proc of the ACM-SIGMOD International Conference on Management of Data. Atlantic City, USA, 1990:322 -331

二级参考文献36

  • 1刘晓鸿,戴汝为.线性阈值单元神经元网络的图灵等价性[J].计算机学报,1995,18(6):438-442. 被引量:5
  • 2[1]R Agrawal,M Mehta,J Shafer,et al.The QUEST data mining system[A]. Proc of Int Conf on Data Mining and Knowledge Discovery(KDD′96)[C].Oregon,1996.244-249.
  • 3[2]D J Berndt, J Cliffod. Finding patterns in time series: A dynamic programming approach[A]. Advances in Knowledge Discovery and Data Mining[C]. Menlo Park:AAAI Press,1996.229-248.
  • 4[3]C Faloutsos, M Ranganathan, Y Manolopoulos. Fast subsequence matching in time-series databases[A]. Proc of ACM SIGMOD Conf on Management of Data (SIGMOD′94)[C]. Minneapolis: ACM Press,1994.419-429.
  • 5[4]R Agrawal, Lin K I, Sawhony Shim K, et al.Fast simi-larity search in the presence of noise, scaling and translation in time series databases[A].Proc of 21st Int Conf on Very Large Data Bases[C]. Zurich,1995.490-501.
  • 6[5]N Roussopoulos, S Kelley, F Vincent. Nearest neighbour queries[A]. Proc of ACM SIGMOD[C]. San Jose,1995.71-79.
  • 7[6]R Agrawal, C Faloutsos, A Swarni. Efficient similarity search in sequence database[A]. 4th Int Conf on Foun-dations of Data Organization and Algorithms[C].Evanston,1993.69-84.
  • 8[7]D Rafiei, A Mendelzon. Similarity-based queries for time series data[A]. Proc of ACM SIGMOD Conf on Management of Data(SIGMOD′97)[C].Arizona: ACM Press,1997.13-25.
  • 9Li D,Knowledge Based Syst,1998年,10期,431页
  • 10Li D,Proc Second Pacific-Asia Conf Knowledge Discovery & Data Mining.Melbourne,1998年,392页

共引文献225

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部