期刊文献+

一种优化的顺序IB文本聚类算法 被引量:2

An Improved Sequential IB Algorithm for Document Clustering
原文传递
导出
摘要 针对顺序 IB(sIB)算法在文本聚类上存在的诸如易陷入局部优解、效率较低等问题,基于模拟退火方法,提出一种优化的顺序文本聚类算法(SA-isIB).该算法根据一个合理的退火序列,从基本 sIB 算法产生的初始聚类结果中随机选取一定比例的文本,对其类标记进行随机修改并重新对解进行优化,经过退火过程后,得到比 sIB 算法精度更高的文本聚类结果.文本数据集上的实验结果表明,SA-isIB 能有效提高 sIB 算法用于文本聚类的精度. To solve the problems of local optima and low efficiency in sequential information bottleneck (sIB) algorithm for document clustering, an improved sIB algorithm is proposed, namely SA-isIB. By a reasonable annealing sequence, a certain proportional of documents are selected randomly from the initial clustering solution of basic sIB algorithm. Then the clustering labels of selected documents are revised and the solution is optimized iteratively. After the process of simulated annealing, higher accuracy document clustering solutions are obtained. Experimental results on document datasets show that by using SA-isIB algorithm the accuracy of sIB algorithm for document clustering is improved efficiently.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期417-423,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60674001 60773048)
关键词 文本聚类 信息瓶颈理论 模拟退火 基于模拟退火的迭代顺序IB(SA—isIB)算法 Document Clustering, Information Bottleneck (IB) Theory, Simulated Annealing,Simulated Annealing-Iterative Sequential Information Bottleneck (SA-isIB) Algorithm
  • 相关文献

参考文献12

  • 1Tishby N, Pereira F, Bialek W. The Information Bottleneck Method //Proc of the 37th Annual Allerton Conference on Communication, Control and Computing. Illinois, USA, 1999 : 368 - 377
  • 2Slonim N, Friedman N, Tishby N. Unsupervised Document Classification Using Sequential Information Maximization//Proc of the 25 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere, Finland, 2002:129 - 136
  • 3Goldberger J, Gordon S, Greenspan H. Unsupervised Image-Set Clustering Using an Information Theoretic Framework. IEEE Trans on Image Processing, 2006, 15 (2) : 449 - 458
  • 4Slonim N, Somerville R, Tishby N, et al. Objective Classification of Galaxy Spectra Using the Information Bottleneck Method. Monthly Notices of the Royal Astronomical Society, 2001, 323 (2) : 270 - 284
  • 5Tishby N, Slonim N. Data Clustering by Markovian Relaxation and the Information Bottleneck Method// Proc of the 13th Annual Conference on Neural Information Processing Systems. Colorado, USA, 2001 : 640 -646
  • 6Schneidman E, Bialek W, Berry M J. An Information Theoretic Approach to the Functional Classification of Neurons // Proc of the 15th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2002 : 197 - 204
  • 7Gorodetsky M. Methods for Discovering Semantic Relations between Words Based on Co-Occurrence Patterns in Corpora. Masters Dissertation. Jerusalem, Palestine: Hebrew University. School of Computer Science and Engineering, 2002
  • 8Slonim N. The Information Bottleneck: Theory and Application. Ph. D Dissertation. Jerusalem, Palestine : Hebrew University. School of Computer Science and Engineering, 2002
  • 9Chechik G, Tishby N. Extracting Relevant Structures with Side Information// Proc of the 16th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2002:857 - 864
  • 10Gondek D, Hofmann T. Non-Redundant Data Clustering//Proc of the 4th IEEE International Conference on Data Mining. Brighton, UK, 2004:75 -82

同被引文献8

  • 1叶阳东,刘东,贾利民,LI Gang.一种自动确定参数的sIB算法[J].计算机学报,2007,30(6):969-978. 被引量:5
  • 2TISHBY N,PEREIRA F C,BIALEK W.The information bottleneck methodEEB/OL].[2009-06-06].http://www.princeton,edu/-wbialek/our _ paper/tishbytal _ 99.pdf.
  • 3SLONIM N,FRIEDMAN N,TISHBY N.Unsupervised document classification using sequential information maximizationFC]//Proceedings of the 25th Ann Int ACM SIGIR Conf on Research and Development in Information Retrieval.New York,USA:ACM Press,2002:129-136.
  • 4GOLDBERGER J,GORDON S,GREENSPAN H.Unsupervised image-set clustering using an information theoretic framework[l].IEEE Trans on Image Processing,2006,15 (2):449-458.
  • 5SLONIM N,SOMERVILLE R,TISHBY N,et al.Objective classification of galaxies spectra using the information bottleneck method[i].Monthly Notices of the Royal Astronomical Society,2001,323:270-284.
  • 6TISHBY N,SLONIM N.Data clustering by Markovian relaxation and the information bottleneck method[C]//Advances in Neural Information Processing Systems (NIPS-13).Cambridge,MA:MIT Press,2001:640-646.
  • 7SLONIM N.The information bottleneck:theory and application[D].Jerusalem,Israel:Hebrew University of Jerusalem,2002.
  • 8夏利民,谭立球,钟洪.基于信息瓶颈算法的图像语义标注[J].模式识别与人工智能,2008,21(6):812-818. 被引量:6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部