期刊文献+

基于核主元分析和支持向量机的f-CaO含量预测 被引量:1

Predicting the Free Calcium Oxide Content on the Basis of KPCA and Support Vector Machines
下载PDF
导出
摘要 将核主元分析和支持向量机相结合,运用核主元分析对数据样本进行非线性特征提取,得到更易于回归的特征主元分量,达到了降低支持向量机的输入空间维数,然后运用最小二乘支持向量机进行训练,通过网格搜索和交叉验证确定最小二乘支持向量机的最优参数。建立了预测水泥熟料游离氧化钙含量的核主元分析支持向量机模型。计算结果表明提出的模型能有效地预测水泥熟料游离氧化钙含量。 Kernel principal component analysis(KPCA) and support vector machines(SVM) were combined in this study,which employed KPCA to conduct nonlinear feature extraction from the data sample and obtained feature principal components that are easier for regression operations.The number of input space dimensions that could lower the SVM has been met.After that,training was conducted by using the least squares support vector machines(LS-SVM) and determined the optimal parameters of the LS-SVM by means of grid searching and cross validation.A KPCA-SVM-based model was then established to predict the free calcium content in the clinker.Finally,our calculation results proved that the model proposed in this study can effectively predict the free calcium content in the clinker.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2008年第6期130-134,共5页 Journal of Wuhan University of Technology
基金 河南省科技攻关项目(0624440059)
关键词 游离氧化钙 软测量 核主元分析 支持向量机 free calcium oxide soft sensor KPCA support vector machine
  • 相关文献

参考文献10

二级参考文献30

  • 1黄宴委,彭铁根.基于核主元分析的非线性动态故障诊断[J].系统仿真学报,2005,17(9):2291-2294. 被引量:19
  • 2郑小霞,钱锋.基于PCA和最小二乘支持向量机的软测量建模[J].系统仿真学报,2006,18(3):739-741. 被引量:33
  • 3杨延西,刘丁,辛菁.基于LS-SVM的机器人逆运动学建模[J].系统仿真学报,2006,18(5):1260-1262. 被引量:7
  • 4孙静珉 陆德民 吴孝炽 等.聚酯工艺[M].北京:化学工业出版社,1985..
  • 5Vapnik V. An Overview of Statistical Learning Theory[J]. IEEE Trans.Neural Networks (S 1045-9227), 1999, 10(5): 988-999.
  • 6Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters(S1370-4621), 1999, 9(3):293-300.
  • 7Vapnik V N.Statistical learning theory[M].New York:1995.
  • 8Burges CJC.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 9Johan Suykens A K.Nonlinear Modeling and Support Vector Machines[C]//IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001.
  • 10J.A.K.Suykens,J.Vandewalle.Least squares support vector machine classifiers[J].Neural Processing Letters (S1370-4621),1999,9(3):293-300.

共引文献2417

同被引文献18

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部