期刊文献+

用积分算子方法求二阶数值微分 被引量:1

Solve Second-order Numerical Differentiation by Using Integral Operator
下载PDF
导出
摘要 数值微分就是用离散方法近似地求出函数在某点的导数值。关于数值微分己有许多求解方法,但这些方法都有各自的局限性,且关于二阶导数近似逼近的方法研究相对较少。基于Groetsch的思想,提出了利用积分算子来构造近似二阶导数的方法,并将此方法应用于二阶数值微分问题,给出了相应的误差估计。通过数值实验表明,此方法对于二阶数值微分问题十分有效,而且计算量小。 Numerical differentiation was that derivative value of a function at a certain point was approximately solved in discrete method.There have been a lot of solutions to numerical differentiation.However,they have their limitations of their own.Moreover,there were relatively few researches on derivative of second order approximation.Based on Groetsch's thought a method was brought forward that could structure approximate second-order derivative by using integral operator and by applying it to second-order numerical problems we provide corresponding error estimate.It was made clear by numerical experiments that the method was much valid to second-order numerical differential problems;what's more there were not many calculations.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2008年第6期178-180,共3页 Journal of Wuhan University of Technology
基金 国家自然科学基金(60473081 10647141)
关键词 二阶数值微分 积分算子 不适定问题 正则化 second-order numerical differentiation integral operator ill-posed problem regularization
  • 相关文献

参考文献4

  • 1Hanke M, Scherzer O. Inverse Problems Light: Numerical Differentiation[ J ]. American Mathematics Monthly, 2001, 108 (6) :512-521.
  • 2Wang Y B, Jia X Z, Cheng J. A Numerical Differentiation Method and Its Application to Reconstruction of Discontinuity[J]. Inverse Problems, 2002,18 (16) : 1461-1476.
  • 3Groetsch C W. Lanczos' Generalized Derivative[J]. American Mathematics Monthly, 1998, 105(4) : 320-326.
  • 4陆帅,王彦博.用Tikhonov正则化方法求一阶和两阶的数值微分[J].高等学校计算数学学报,2004,26(1):62-74. 被引量:16

二级参考文献1

共引文献15

同被引文献7

  • 1HANKE M, SCHERZER O. Inverse problems light:numerical differentiation [ J ]. Amer Math Monthly, 2001, 108(6) :512 -521.
  • 2GROETSCH C W. Lanczos' generalized derivative [ J ]. Amer Math Monthly, 1998,105 (4) :320 - 326.
  • 3LOCKER J, PRENTER P M. Regularization with differential operators Ⅰ: general theory [ J ]. J Math Anal Appl,1980(74) : 504-529.
  • 4LOCKER J, PRENTER P M. Regularization with differential operators Ⅱ:weak least squares finite element solutions to first kind integral equations [ J ]. SIAM J Numer Anal, 1980(17) :247 - 267.
  • 5WANG Y B, WEI T. Numerical differentiation for two -dimensional scattered data [ J ]. Math Anal Appl, 2005(312) :121 - 137.
  • 6梁学章 朱功勤.构造二元切触插值公式的方法.数学研究与评论,1981,(1):91-100.
  • 7吕小红,吴传生.Abel变换数值反演的积分算子方法[J].数学杂志,2009,29(3):383-386. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部