单调迭代技巧处理一类二阶周期边值问题
Monotone Iterative Technique for Second Order Periodic Boundary Value Problems
摘要
用单调迭代方法研究一类带因果算子的周期边值问题.
In this paper, the monotone iterative technique for periodic boundary value problems with causal operators is developed.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2008年第3期29-32,共4页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金(10771117
10471075)
山东省自然科学基金(Y2007A23)项目
关键词
带因果算子的周期边值问题
单调迭代
正解
periodic boundary value problem with causal operator
monotone iterative technique
positive solution
参考文献6
-
1Ladde G S, Lakshmikantham V, Vatsala A S. Monotone Iterative Techniques for Nonlinear Differential Equations [ M ]. London: Pittman Publishing Inc, 1955.
-
2Jankowski T. Nonlinear boundary value problems for second order differential equations with causal operators [ J ]. J Math Anal Appl, 2007, 332(2) :1350-1392.
-
3Drici Z, McRae F A, Devi J V. Set differential equations with causal operators in a Banach space[ J ]. Nonlinear Anal, 2005, 62 (2) :301-313.
-
4Drici Z, McRae F A, Devi J V. Monotone iterative technique for periodic boundary value problems with causal operators [ J ]. Nonlinear Anal, 2006, 64(7) : 1271-1277.
-
5Ma Ruyun. Positive solutions of a second nonlinear three-point boundary value problem [ J ]. Electron J Diff Eqns, 1999,34 : 1-8.
-
6裴瑞昌,马草川.一类混合边值问题的无穷多解[J].四川师范大学学报(自然科学版),2007,30(4):465-467. 被引量:5
二级参考文献6
-
1Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications [ J ]. J Funet Anal, 1973,14: 349-381.
-
2Brezis H, Nirenberg L. Positive solutions of nonlinear ellipitic equation involving critical sobolev exponents [ J ]. Comm Pure Appl Math, 1983,36:437-477.
-
3Stuart C A. Self trapping of an electromagnetic field and bifuraction from the essential specturm[ J]. Arch Rat Mech Anal, 1991, 113 : 65-96.
-
4Stuart C A. Magnetic Field Wave Equations for TM-modes in Nonlinear Optical Wave Guides [ C ]//Mitidieri C. Reaction Diffusion Systems. New York: Marcel Dekker, 1997 : 1-35.
-
5Zhou H S. Existence of asymptotically linear Dirichlet problem[ J]. Nonlinear Anal,2001,44:909-918.
-
6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [ C ]//CBMS Reg Conf Series in Math. Amer Math Soc. New York:Marcel Dekker,1986 ,65 :7-18.
共引文献4
-
1徐云滨,董媛媛.一类三阶半正边值问题正解的存在性[J].内江师范学院学报,2009,24(4):22-24.
-
2周巧.一个具有混合边界条件的Laplace算子谱分析[J].内江师范学院学报,2010,25(12):17-20.
-
3李国发,刘海鸿.一类椭圆混合边值问题无穷多解的存在性[J].四川师范大学学报(自然科学版),2013,36(2):233-235.
-
4李国发.一类超线性椭圆混合边值问题的无穷多解[J].数学的实践与认识,2013,43(22):223-227.
-
1李艳玲.椭圆型方程组边值问题解的存在性与多解性[J].陕西师大学报(自然科学版),1997,25(1):13-16.
-
2李晶晶,程昌钧,盛冬发.考虑高阶横向剪切正交各向异性板振动的微分求积方法[J].振动与冲击,2004,23(4):8-11. 被引量:1
-
3刘华,屈非非.四元数形式的Jacobi猜想[J].天津工程师范学院学报,2010,20(2):43-45.
-
4李必文,陈静.随机中立型泛函微分方程的稳定性态[J].数学杂志,2006,26(1):99-102.
-
5杨和稳.“四块课程”架构下《高等数学》课程建设的探索——以南京信息职业技术学院为例[J].新课程学习(下),2011(1):51-51.
-
6赵艳敏,石东洋.基于谱元方法的三维矢量波动方程的辛离散格式[J].工程数学学报,2011,28(4):505-512.
-
7邓喜才.部分合作博弈均衡点的存在性[J].辽宁工程技术大学学报(自然科学版),2016,35(10):1188-1192.
-
8李晶晶,程昌钧.考虑高阶横向剪切正交各向异性板非线性弯曲的微分求积分析[J].应用数学和力学,2004,25(8):801-808. 被引量:5
-
9融华,刘儒勋.双向孤立波问题的数值方法研究[J].中国科学技术大学学报,2004,34(3):295-306. 被引量:1
-
10李帅,张阿漫,韩蕊.气泡多周期运动时引起的流场压力与速度[J].力学学报,2014,46(4):533-543. 被引量:6