期刊文献+

单调迭代技巧处理一类二阶周期边值问题

Monotone Iterative Technique for Second Order Periodic Boundary Value Problems
下载PDF
导出
摘要 用单调迭代方法研究一类带因果算子的周期边值问题. In this paper, the monotone iterative technique for periodic boundary value problems with causal operators is developed.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2008年第3期29-32,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(10771117 10471075) 山东省自然科学基金(Y2007A23)项目
关键词 带因果算子的周期边值问题 单调迭代 正解 periodic boundary value problem with causal operator monotone iterative technique positive solution
  • 相关文献

参考文献6

  • 1Ladde G S, Lakshmikantham V, Vatsala A S. Monotone Iterative Techniques for Nonlinear Differential Equations [ M ]. London: Pittman Publishing Inc, 1955.
  • 2Jankowski T. Nonlinear boundary value problems for second order differential equations with causal operators [ J ]. J Math Anal Appl, 2007, 332(2) :1350-1392.
  • 3Drici Z, McRae F A, Devi J V. Set differential equations with causal operators in a Banach space[ J ]. Nonlinear Anal, 2005, 62 (2) :301-313.
  • 4Drici Z, McRae F A, Devi J V. Monotone iterative technique for periodic boundary value problems with causal operators [ J ]. Nonlinear Anal, 2006, 64(7) : 1271-1277.
  • 5Ma Ruyun. Positive solutions of a second nonlinear three-point boundary value problem [ J ]. Electron J Diff Eqns, 1999,34 : 1-8.
  • 6裴瑞昌,马草川.一类混合边值问题的无穷多解[J].四川师范大学学报(自然科学版),2007,30(4):465-467. 被引量:5

二级参考文献6

  • 1Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications [ J ]. J Funet Anal, 1973,14: 349-381.
  • 2Brezis H, Nirenberg L. Positive solutions of nonlinear ellipitic equation involving critical sobolev exponents [ J ]. Comm Pure Appl Math, 1983,36:437-477.
  • 3Stuart C A. Self trapping of an electromagnetic field and bifuraction from the essential specturm[ J]. Arch Rat Mech Anal, 1991, 113 : 65-96.
  • 4Stuart C A. Magnetic Field Wave Equations for TM-modes in Nonlinear Optical Wave Guides [ C ]//Mitidieri C. Reaction Diffusion Systems. New York: Marcel Dekker, 1997 : 1-35.
  • 5Zhou H S. Existence of asymptotically linear Dirichlet problem[ J]. Nonlinear Anal,2001,44:909-918.
  • 6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [ C ]//CBMS Reg Conf Series in Math. Amer Math Soc. New York:Marcel Dekker,1986 ,65 :7-18.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部