期刊文献+

基于二代小波变换的信号去噪及其软测量建模 被引量:7

Signal De-noising based on second generation wavelet transform and soft sensor modeling
原文传递
导出
摘要 化工生产过程中采集到的数据信号通常具有随机性和非平稳性,附加了各种噪声,以至于影响数据建模的拟合效果和泛化性能。本文基于二代小波分析的特点,提出了一种对信号数据进行小波变换阈值去噪的方法。该方法可去除大部分高频随机噪声,提取真实信号,进而提高数据的置信度。将该方法与支持向量机相结合并应用于双酚A反应过程质量指标软测量模型中。仿真结果表明,该方法能有效恢复数据的真实性,提高数据建模的拟合精度与泛化性能。 Because of the nonstationarity and randomicity of data in the chemical production process, it contains different noises inevitably, which will affect the fitting and the generalization capability in data modeling. Based on the characteristics of wavelet analysis, this paper proposed a signal denoising method which combines the second generation wavelet transform with a new threshold function . The method can remove random noises, and extract true signals to improve the credibility of the data. Combined the method with support vector machine and applied to a modeling for the performance figure of BPA productive process, the result indicates that it is effective to regain the factuality of the data and improve the fitting and generalization capability of the soft sensor model.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第7期823-826,共4页 Computers and Applied Chemistry
基金 国家自然科学基金(60674092) 江苏省高技术研究项目(工业部分)(BG2006010) 江南大学创新团队发展计划资助.
关键词 二代小波 信号去噪 软测量 支持向量机 泛化能力 the second generation wavelet, signal de-noising, soft sensor, support vector machine, generalization capability
  • 相关文献

参考文献4

二级参考文献21

  • 1[1]Basak SC,Grunwald GD,Gute BD and Balasubramanyam KJ.Chem Inf Comput Sci,2000,40:885.
  • 2[2]Basak SC,Bertelsen S and Grunwald GD.Toxicol Lett,1995,79:239.
  • 3[3]Riahi S,Mousavi MF and Shamsipur M.Prediction of selectivity coefficients of a theophylline-selective electrode using MLR and ANN.2006,69:736-740.
  • 4[4]Bastien Philippe Vinzi,Vincenzo Esposito and Tenenhaus Michel.PLS generalised linear regression.Computational Statistics and Data Analysis,2005,48:17-46.
  • 5[5]Vapnik VN.Statistical Learning Theory.New York:A Wiley-Interscience Publication,1998.
  • 6[6]Norinder.Ulf support vector machine models in drug design:Applications to drug transport processes and QSAR using simplex optimisations and variable selection.Neurocomputing,2003,55:337-346.
  • 7[7]Trotter MWB,Buxton BF and Holden SB.Support vector machines in combinatorial chemistry.Measurement and Control,2001,34:235-239.
  • 8[8]Qian Z,Cai YD and Li Y.A novel computational method to predict transcription factor DNA binding preference.Biochem Biophys Res Commun,2006,348.
  • 9[9]Vijay K,Agrawala,Padmakar,and Khadikar V.QSAR study on narcotic mechanism of action and toxicity:a molecular connectivity approach to vibrio fischeri toxicity testing.Bioorganic & Medicinal Chemistry,2002,10:3517-3522.
  • 10[10]van der Waterbeemd H.Chemometric Methods in Molecular Design.VCH:Weinheim,1995,2.

共引文献2283

同被引文献48

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部