期刊文献+

分布式反应器模型的小波逼近辨识方法

Identification of wavelet approximation distributed reactor model
原文传递
导出
摘要 小波变换作为一种有效的函数逼近工具,为其应用于分布参数系统的逼近提供了理论根据。以一大类复杂化学反应器分布参数模型为研究对象,采用Haar正交小波函数逼近非线性分布参数模型,然后采用多变量最小二乘递推辨识算法求解集总化的多变量状态空间模型参数。不仅考虑实际过程中状态量、控制量或变参数的乘积非线性特征,而且将反应过程的传质系数当作空间变参数进行辨识,为此,提出了一种便于逼近计算的新的Haar小波运算矩阵——平方积分运算矩阵,并得到了计算通式。通过仿真实例说明了通过提高Haar小波逼近阶数可极大地改善辨识效果,同时运用变尺度分段逼近方法,以较低的阶数较好地逼近平稳过程,说明了该方法的有效性。 Wavelet transform, as an efficient function approximation tool, proves its feasibility while applied to distributed parameter systems. This work was engaged in a large category of distributed parameter models of complicated chemical reactors. Haar ortbogonal wavelet was applied to the approximate nonlinear distributed parameter model, followed by multivariable recursive least square algorithm to solve the unknown parameters of lumped state space model. This work not only involved that nonlinear feature as a result of the product of state variables, control variables and varying parameters in the actual process, but also considered the mass transfer coefficients as variable spatial parameters to identify. Therefore, a new Haar wavelet operational matrix called square integral operational matrix was proposed as well as its calculation method. It is proved by simulation that the identification effect can be greatly improved by increasing the Haar wavelet expansion rank. And varying-scale wavelet expansion can preferably approximate the process with a lower rank. Thus, prove the efficiency of that method.
作者 刘济 顾幸生
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第7期872-876,共5页 Computers and Applied Chemistry
关键词 小波变换 分布参数 化学反应器 辨识 wavelet transform, distributed parameter, chemical reactor, identification
  • 相关文献

参考文献3

二级参考文献16

  • 1[1]Zhang Qinghua, Albert Benveniste. Wavelet networks[J]. IEEE Trans on Neural Networks,1992,3(6):889-898.
  • 2[2]Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to non-linear system identification[J]. Int J Control,1989,50(5):1873-1896.
  • 3[3]Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling and identification[J]. Int J Control,1992,56(2):319-346.
  • 4[4]Zhang Qinghua. Using wavelet network in nonparametric estimation[J]. IEEE Trans on Neural Networks,1997,8(2):227-236.
  • 5[5]Gomm J B. Selecting radial basis function network centers with recursive orthogonal least squares training[J]. IEEE Trans on Neural Networks,2000,11(2):306-314.
  • 6[6]Kugarajah K, Zhang Q. Multidimensional wavelets frame[J]. IEEE Trans on Neural Networks,1995,6(6):1552-1556.
  • 7[7]Leontaritis I J, Billings S A. Model selection and validation methods for nonlinear systems[J]. Int J Control,1987,45(1):311-341.
  • 8[2]Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to nonlinear system identification [J]. International Journal of Control, 1989, 50(5 ): 1873 ~ 1896.
  • 9[3]Zhu Q M, Billings S A. Parameter estimation for stochastic nonlinear rational models [ J ]. International Journal of Control,1993, 57(2): 309 -333.
  • 10[4]Jonas S, Qinghua Z, Lennart L, et al. Non-linear black-box modeling system identification: a unified overview [ J]. Automatica,1995, 31(12): 1691 ~1724.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部