摘要
对一种基于模糊神经网络的故障诊断方法进行了研究,探讨了模糊神经网络诊断模型和模糊算子选择。以柴油机示功图作为特征信号,构造了船舶主机故障诊断仿真系统,并给出了系统知识学习和模糊推理结果。
This paper pursues a fuzzy neural networks approach for fault diagnosis and discusses its models and the choice of the fuzzy operators. Using the indicator cards as the characteristic signals of the system, a simulation system is constructed to diagnose the faults of a marine main diesel engine. And the results of knowledge learning and fuzzy reasoning by the system are given.
出处
《上海海运学院学报》
1997年第3期22-28,共7页
Journal of Shanghai Maritime University
基金
交通部重点科技项目
上海市自然科学基金
关键词
模糊算子
故障诊断
船舶
柴油机
模糊神经网络
neural networks, fuzzy operators, fault diagnosis, knowledge reasoning