期刊文献+

基于参数变化粒子群算法的MAF传感器建模

Modeling of the MAF sensor using PSO with changeable parameters
下载PDF
导出
摘要 在用Hammerstein模型描述热膜式空气质量流量(MAF)传感器时,应用多项式回归分析建立其静态非线性环节的模型,应用参数线性变化的粒子群优化(PSO)算法建立其动态线性环节的模型。文章给出PSO算法的适应度函数及算法流程,并说明了参数设置的方法。研究表明,与基本粒子群算法相比,参数线性变化粒子群算法的建模精度及收敛速度有很大提高。应用参数变化粒子群算法进行传感器动态建模是非常有效的。 The hot-film mass air flow (MAF) sensor is described by the Hamlnerstein model. The polynomial regression analysis is used to fit the expression of the static non-linear part, and the particle swarm optimization (PSO) with changeable parameters is utilized to build the model of the dynamic linear part. The fitness function of PSO is presented, the computation procedure is introduced, and the method of setting parameters is explained in this paper. The modeling results show that both the modeling precision and the convergence speed of PSO with changeable parameters are better than those of basic PSO. It is very effective using PSO with changeable parameters to build the dynamic models of sensors.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期890-894,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60474057)
关键词 热膜式空气质量流量传感器 HAMMERSTEIN模型 粒子群算法 hot-film mass air flow sensor Hammerstein model particle swarm optimization
  • 相关文献

参考文献8

二级参考文献55

  • 1郎自强.一种辨识Hammerstein模型的新方法[J].自动化学报,1993,19(1):37-45. 被引量:7
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献480

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部