期刊文献+

线段Bézier曲线 被引量:1

Line segment Bézier curves
下载PDF
导出
摘要 文章给出了线段算术的定义和性质,它是点集算术的特殊情况,但更便于计算;提出了线段Bézier曲线的概念,就是把区间Bézier曲线中的长方形换成满足一定条件的线段,这里的线段是指该线段上所有点的集合;给出了线段Bézier曲线的性质及其细分算法。它是点集Bézier曲线的特例,具有结构简单、算法省时及容易拼接等优点。 The definition and properties of line segment arithmetic are given, which is a special situation of point set arithmetic, but easily calculated. The definition of line segment Bézier curves is put forward. The rectangle of the interval Bézier curves is exchanged by the line segment which is the set that satisfies some conditions. The properties and subdivision of line segment Bézier curves are given. The line segment Bézier curve is a special case of the point set Bézier curves, and it has simpler structure and can be jointed together easily and smoothly, and the calculation time can be saved.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期977-979,共3页 Journal of Hefei University of Technology:Natural Science
基金 淮南师范学院科研资助计划项目(2007ikp13)
关键词 线段算术 点集Bézier曲线 线段Bézier曲线 line segment arithmetics point set Bézier curve line segment Bézier curve
  • 相关文献

参考文献8

  • 1Sederberg T W, Faroukir T. Approximation by interval Bezier curves[J]. IEEE Computer Graph Appl, 1992, 15 (2):87-95.
  • 2Chen Falai, Lou W. Degree reduction of interval Bezier curves[J]. Computer-Aided Design, 2000, 32 (6): 571-582.
  • 3Wei Yongwei, Wang Guozhao. Subdivion of interval Bezier eurves[J]. Jounal of Zhejiang University(Science Edition), 2004,31(3) :262-266.
  • 4Hu C Y, Maekawa T, Sherbrooke E C, et aL Robust interval algorithm for curve interseetions[J]. Computer-Aided Design,1996, 28(6/7) : 495-506.
  • 5Mudur S P, Koparkar P A. Interval methods for processing geometric objects[J]. IEEE Comput Graph Appl, 1984, 4 (2):7-17.
  • 6Tuohy S T, Maekawa T, Shen G, et al. Approximation of measured data with interval B-splines[J]. Computer-Aided Design, 1997, 29(11) : 791-799.
  • 7Chen Falai, Yang Wu. Degree reduction of disk Bezier curves[J]. Computer Aided Geometric Design, 2004, 21 (3):263-280.
  • 8李宁,黄有度.点集Bézier曲线[J].大学数学,2006,22(5):59-63. 被引量:2

二级参考文献4

  • 1Sederberg T W,Faroukir T.Approximation by interval Bézier curves[J].IEEE Computer Graph Appl,1992,15(2):87-95.
  • 2Chen F,Lou W Degree reduction of interval Bézier curves[J].Computer-Aided Design 2000,32(6):571-582.
  • 3Chen Falai,Wu Yang.Degree reduction of disk Bézier curves[J].Computer Aided Design geometric Design 2004,21(3):263-280.
  • 4Wei Yong-wei,WANG Guo-zhao.Subdivision of interval Bézier curves[J].Journal of Zhejiang University(Science Edition) 2004,31(3):262-266.

共引文献1

同被引文献5

  • 1李宁,黄有度.点集Bézier曲线[J].大学数学,2006,22(5):59-63. 被引量:2
  • 2SEDERBERG T W, FAROUKIR T. Approximation by interval Bezier curves[J]. IEEE Computer Graph Appl, 1992,15 (2) :87-95.
  • 3C HEN F, LOU W. Degree red uction of interval Bezier curves[J]. Comp uter-Aided Design, 2 0 0 0,3 2 (6): 5 71-5 8 2.
  • 4WEI Yong-wei, WANG Guo-zhao. Subdivion of interval Bezier curves[J]. Jounal ofZhejiang University:Science Edition, 2004,31 (3) : 262-266.
  • 5FALAI CHEN, WU YANG, Degree reduction of disk B6zier curves[J]. Computer Aided Geometric Design, 2004,21 (3) :263-280.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部