期刊文献+

弱归纳*-半环上仿射映射的联立不动点(英文) 被引量:2

Simultaneous Fixed Points of Affine Maps Over Weak Inductive *-semirings
下载PDF
导出
摘要 本文给出了构造弱归纳*-半环上任意两个二元仿射映射的联立不动点的一种方法,并证明了对于归纳*-半环上的二元仿射映射,这种构造实际上给出了其最小联立前不动点. In this paper, we give a construction of simultaneous fixed points of any two binary affine maps over a weak inductive *-semiring. Moreover, we prove that for inductive * -semirings, this construction indeed gives the least simultaneous prefixed points.
作者 冯锋 柳晓燕
出处 《数学进展》 CSCD 北大核心 2008年第3期283-290,共8页 Advances in Mathematics(China)
基金 the Natural Science Foundation of Education Department of Shaanxi Province(No.07JK376).
关键词 弱归纳*-半环 联立不动点 仿射映射 weak inductive ,-semiring simultaneous fixed point affine map
  • 相关文献

参考文献12

  • 1[1]Bloom,S.L.,Esik Z,Matrix and matrical iteration theories,part I,J.Comput.System Sci.,1993,46:381-408.
  • 2[2]Bloom,S.L.,Esik Z,Iteration Theories:the Equational Logic of Iterative Processes,EATCS Monographs on Theoretical Computer Science,Berlin:Springer,1993.
  • 3[3]Bloom,S.L.,Esik Z,The equational logic of fixed points,Theater.Comput.Sci.,1997,179:1-60.
  • 4[4]Conway,J.H.,Regular Algebra and Finite Machines,London:Chapman and Hall,1971.
  • 5[5]Davey,B.A.,Priestly,H.A.,Introduction to Lattices and Order,Cambridge:Cambridge University Press,1990.
  • 6[6]Esik,Z.,Kuich,W.,Inductive *-semirings,Theoret.Comput.Sci.,2004,324:3-33.
  • 7[7]Feng F.,Zhao X.Z.,Jun Y.B.,*-μ-semirings and *-λ-semirings,Theoret.Comput.Sci.,2005,347:423-431.
  • 8[8]Golan,J.S.,Semirings and Affine Equations over Them:Theory and Applications,Dordrecht:Kluwer,2003.
  • 9[9]Goldstern,M.,Vervollstandigung yon Halbringen,Diploma Thesis,Technical University of Vienna,1985.
  • 10[10]Kozen,D.,On Kleene algebras and closed semirings,Proc.MFCS'90,Lecture Notes in Computer Science,vol.452,Rovan (Ed.),Berlin:Springer,1990,26-47.

同被引文献14

  • 1Golan J S. Semirings and Affine Equations over Them: Theory and Applications[M]. Dordrecht: Kluwer, 2003.
  • 2Kozen D. On Kleene algebras and closed semirings[C]//Rovan. Lecture Notes in Computer Science. MFCS, Slovakia, 1990, New York: Springer-Verlag, 1990, 452: 26-47.
  • 3Esik Z, Kuich W. Inductive *-semirings[J1. Theoretical Comouter Science, 2004, 324: 3-33.
  • 4LeiB H. Kleene modules and linear languages[J]. The Journal of Logic and Algebraic Programming, 2006, 66: 185-194.
  • 5Feng F, Jun Y B, Zhao X Z. Soft semirings[J]. Computer and Mathematics with Applications, 2008, 56: 2621-2628.
  • 6Feng F, Jun Y B, Zhao X Z. On *-λ-semirings[J]. Information Sciences, 2007, 177: 5012-5023.
  • 7Feng F, Zhao X Z, Jun Y B. *-μ-semirings and *-λ-semirings[J]. Theoretical Computer Science, 2005, 347: 423-431.
  • 8Tarski A. A lattice-theoretical fixpoint theorem and its applications [J]. Pacific Journal of Mathematics, 1955,5:285-309.
  • 9Davis A, A characterization of complete lattices[J]. Pacific Journal of Mathematics, 1955,5:311-319.
  • 10Abian A, Brown A. A theorem on partially ordered sets with applications to fixed point theorems [J]. Canadian J. of Math., 1961,13:173-174.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部