期刊文献+

Kautz网络中的路和宽距离

The Path and Wide-distance of Kautz Networks
下载PDF
导出
摘要 用K(d,n)表示Kautz网络,该网络由于具有优良的拓扑性质而频频出现在文献中被广泛研究,本文针对该网络中的路和宽距离得到如下结论:设x和y是中两个不同的顶点,P是一条最短(x,y)-路。Q是一条最短(y,x)-路,那么(1)如果P和Q相交于不同于x和y的内部结点,那么|P|+|Q|>n;(2)P∪Q最多由3个圈的并组成;(3)如果有d(x,y)>=n-d+3,那么(d-1)-宽距离d_(d-1)(K(d,n):x,y)=n+1.作为结论(3)的一个应用,本文表明,如果d>=3和n<=d-2,那么独立数α_(l,d-1)(K(d,n))=α_(l,d)(K(d,n))=d^n+d^(n-1),其中l=1,2,…,n. Let K(d, n) denote Kautz networks, which frequently appear in the literature because of its good teatures. This paper shows the following results. Let x and y be two distinct vertices of K(d, n), P be a shortest (x, y)-path, Q be a shortest (y, x)-path, Then(1)|P| + |Q| 〉 n if P and Q intersect in a vertex other than x and y; (2) P ∪ Q consists of at most three cycles; (3) The wide-distance dd-1(K(d, n) : x, y) = n + 1 if d(x, y) 〉 n - d+ 3. And using result (3), we obtain the independence number αl,d-1(K(d, n)) = αl,d(K(d, n)) = d^n+d^n-1for l =1, 2,.. , n if d≥ 3 and n ≤d-2.
出处 《数学进展》 CSCD 北大核心 2008年第3期337-341,共5页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10661007) 江西省自然科学基金(No.0611009)
关键词 (l ω)-独立数 Kautz网络 宽距离 (l, w)-independence number Kautz networks wide-distance
  • 相关文献

参考文献12

  • 1Akers, S.B., and Krishnamurthy, B., A group-theoretic model for symmetric interconnection networks, IEEE Trans Coraput, 1989, 38: 555-566.
  • 2Bhuyan, L., and Agrawal, D.P., Generalized hypercube and hypercube structure for a computer network, IEEE Trans Comput, 1984, 33(4): 323-333.
  • 3Chen C., A design methodology for synthesizing parallel algorithms and architectures, J Parallel Distrib Comput, 1986, 3: 461-491.
  • 4Chen G. and Lau, F.C.M., Comments on a new family of Cayley graph interconnectlon networks of constant degree four, IEEE Trans Parallel Distrib Syst., 1997, 8: 1299-1300.
  • 5Day, K. and Tripathi, A. , Arrangement graphs: A class of generated star graphs, Inform Process Left, 1992, 42: 235-241.
  • 6Samatham, M.R. and Pradhan, D.K., The de Bruijn multiprocessor network: A versatile parallel processing and sorting network for VLSI, IEEE Trans Comput, 1989, 38: 567-581.
  • 7Xu J.M., Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
  • 8Kautz, W.H., Design of optimal interconnection networks for multiprocessors. Architecture and Design of Digital Computers, Nato Advanced Summer Institute, 1969, 249-272.
  • 9Imase, M., Soneoka, T., and okada, K., Fault-tolerant processor interconnection networks, Systems and Computers in Japan, 1986, 17(8): 21-30.
  • 10Du D.Z., Hsu, D.F., and Lyuu, Y.D., On the diameter vulnerabili.ty of Kautz digraphs, Discrete Mathematics, 1996, 151 : 81-85.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部