期刊文献+

关于Mohebi-Radjabalipour引理的两个算子(英文)

Two Operators Related to the Mohebi-Radjabalipour Lemma
下载PDF
导出
摘要 通过两个具体算子的讨论,说明Mohebi-Radjabalipour引理中的条件″ran(λ-T)不是X中的闭集″不能替换成更弱的条件″ran(λ-T)不是Fredholm算子″. We provide two operators from which we see that the hypothesis in the Mohebi- Radjabalipour Lemma that "ran(λ-T)is not closed in X"can not be replaced by the weaker condition that " λ- T is not Fredholm operator".
作者 刘明学 林辰
出处 《应用泛函分析学报》 CSCD 2008年第2期97-99,共3页 Acta Analysis Functionalis Applicata
基金 the Natural Science Foundation of P.R.China(10771039)
关键词 BANACH空间 有界线性算子 不变子空间 Banach space bounded linear operator invariant subspace
  • 相关文献

参考文献12

  • 1Liu M, Lin C. Richness of invariant subspace lattices for a class of operators[J]. Illinois J Math,2003, 47.
  • 2Mohebi H, Radjabalipour M. Scott Brown's techniques for perturbations of decomposable operators[J]. Integr Equ Oper Theory, 1994,18 : 222-241.
  • 3Mohebi H. A natural reprentation for the operator algebra AlgLat T[J]. Arch Math, 1995,65..255-262.
  • 4Brown S. Some invariant subspaces for subnormal operators [J]. Integral Equations and Operator Theory, 1978,1 : 310-333.
  • 5Brown S. Hyponormal operators with thick spectra have invariant subspaces[J]. Ann of Math, 1987, 125:93-103.
  • 6Hadwin D. An operator still not satisfying Lomonsov's hypothesis[J]. Proc Amer Math Soc,1995,123: 3039-3041.
  • 7Hadwin D, Nordgren E A, Radjavi H, Rosenthal P. An operator not satisfying Lomonosov's hypothesis [J]. Funt Anal, 1980,38 : 410-415.
  • 8Lin C, Ruan Y, Yan Z. p-hyponormal operators are subscalar[J]. Proc Amer Math Soc,2003, 131: 2753-2759.
  • 9Lin C, Ruan Y, Yan Z. W-hyponormal operators are subscalar[J]. Integer Equ oper Theory,2004,50: 165-168.
  • 10Lin C, Yan Z. Bishop's property (β) and essential spectra of quasisimilar operators [C]. Proc Amer Math Soc, 2000,128 : 485-493.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部