期刊文献+

带有扩散、脉冲和时滞的非自治捕食系统的正周期解(英文) 被引量:3

Positive Periodic Solutions for a Nonautonomous Delayed Predator-prey System with Diffusion and Impulses
下载PDF
导出
摘要 考虑了一类食饵在斑块环境中扩散具有脉冲和时滞的捕食系统,通过灵活地运用Gaines和Mawhin的连续拓扑度定理,获得了一系列易验证的正周期解存在的充分条件. A delayed predator-prey system with prey dispersal in patch environments and impulsive effects is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory, a set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions to the system.
出处 《应用泛函分析学报》 CSCD 2008年第2期139-149,共11页 Acta Analysis Functionalis Applicata
基金 the NSF of China (10671166)
关键词 捕食系统 时滞 脉冲 扩散 拓扑度 predator-prey system delay impulse diffusion coincidence degree
  • 相关文献

参考文献8

  • 1Song X, Chen L. Persistence and global stability for nonautonomous predator-prey system with diffusion and time-delay[J]. Comput Math Appl, 1998,35 (6) : 33-40.
  • 2Cushing J M. Periodic time-dependent predator-prey system[J]. SIAM J Appl Math, 1977,32 : 82-95.
  • 3Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin Springer- Verlag, 1977.
  • 4Panetta J C. A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment[J]. Bull Math Biol, 1996,58 : 425-47.
  • 5Liu X, Chen L. Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on predator[J]. Chaos Solutions and Fractals, 2003,16 : 311-320.
  • 6Tang S, Chen L. The periodic predator-prey Lotka-Volterra model with impulsive effect[J]. J Mechanics in Medicine and Biology, 2002,2 : 207-206.
  • 7Cuevas C, Pinto M. Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay[J]. Comput Math Appl, 2001,42 (3-5) : 671-685.
  • 8Bainov D D, Simeonov P S. Impulsive Differential Equations: Periodic Solutions and Applications[M]. Longman, New York, 1993.

同被引文献17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部