期刊文献+

一类多值广义向量似变分不等式解的存在性

A Multiple-valued Generalized Vector Variational-like Inequality
下载PDF
导出
摘要 在Banach空间中研究了一类多值广义向量似变分不等式问题(GMLVVIP),此类变分不等式以经典的变分不等式为基础,将单值映射推广到了多值映射.在多值映射与仿射的条件下,利用T的θ-h半连续与伪单调性,通过运用KKM定理和K-F-G不动点定理,证明了这类GMLVVIP解的存在性并给出了证明. In Banach spaces, a new kind of multiple-valued generalized vector variational-like inequality problem (GMLWIP) is introduced and studied. This kind of variational inequality is based on the classical variational inequality, taking the single-valued mapping to extend the multiple-valued mapping. In the case of multiple-valued mapping and affine, we use hemicontinuity and quasi-monotone of T and show some existence theorems about them by using the KKM-theorem and the K- F-G fixed-point theorem. Our work extends and improves some important known results in Ref[5]. WOldS:
作者 孙丽 何中全
出处 《沈阳师范大学学报(自然科学版)》 CAS 2008年第3期260-263,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 四川省高等教育教学改革项目(2005198)
关键词 仿射 半连续 伪单调 不动点 affine semi-continuous pseudo-monotone fixed point
  • 相关文献

参考文献10

  • 1GIANNESSI F. Theorems of alternative, quadratic programs and complementarity problems, in"Variational Inequalities and Complementarity Prohlems"(R. W. Cottle, F. Giannessi, and J. L. Lions, EAs. )[M]. New York: John, Wiley and Sons, 1980:151-186.
  • 2CHEN G Y, CHEN G M. Vector Variational Inequalities and Vector Optimization, Lecture Notes in Economics and Mathematical Systems[ M]. Berlin: Springer-Vrelag, 1987,285:408-416.
  • 3PARIDA J, SEN A. A variational-like inequality for multifunctions with applications[J]. Math Anal Appl, 1987,124: 73-84.
  • 4HE Z Q. Existence theorems for some generalized variational-like inequality problems [ J ]. Nonlinear Analysis Forum, 2006,11:45-51.
  • 5KONNOV I V, YAOJ C. On the Generalized Vector Variational Inequality Problem[J]. Math Anal Appl, 1997,206: 42-58.
  • 6殷洪友,徐成贤.一般多值向量变分不等式问题[J].应用数学学报,2001,24(2):284-290. 被引量:8
  • 7ZHANG S S. Variational Inequality and Complementarity Problem Theory with Applications[ M]. Shanghai: Shanghai Scientific and Technical Publishers, 1991 : 102-195.
  • 8FAN K. A Generalization of Tychonoff's Fixed Point Theorem[J]. Math Ann, 1961,142:303-310.
  • 9JAUBIN J P. Mathematical Methods of Game and Economic Theory[ M]. North-Holland: Amsterdam, 1979: 175- 180.
  • 10FANGZheng.A generalized variational inequality problem with a semi-monotone mapping.南京大学学报:数学半年刊,2006,11:271-275.

二级参考文献4

  • 1Lin K L,J Optim Theory Appl,1997年,92卷,117页
  • 2Chen G Y,J Optim Theory Appl,1992年,74卷,445页
  • 3Chen G Y,Lecture Notes in Economics and Mathematical Systems.285,1987年,285卷,408页
  • 4Fan K,Math Ann,1961年,142卷,305页

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部