摘要
运用计算机技术解决林业问题成为数字农业的一个热点研究领域,融合了粗糙集和神经网络的各自优势,利用粗糙集可以减少信息表达的属性数量,使用神经网络方法系统具有较强的容错及抗干扰能力,为处理不确定、不完整信息提供了一条解决方法,因此,将粗糙集约简技术和神经网络方法结合进行应用,建立了RoughSet-NN模型,并将该模型对给定立地条件的杨树生长状况进行预测。实验表明,该方法收敛,预测准确度高。
It is clear that computer based technique and computer technology used in solving agriculture' s and forestry' s matter are a focus these day. Combines roughset and neural networks, and builds a RoughSet - NN model. Roughset can reduce the number of attribute, and neual networks have the ability of fault tolerant and anti - jamming. Forecast the arbor growth with this model, and the experimental results indicate the method is convergent and has a high degree of certainty.
出处
《计算机技术与发展》
2008年第7期206-208,211,共4页
Computer Technology and Development
基金
安徽省自然科学研究项目(KJ2008A056)
安徽省教育厅青年基金(2008jq1050)
关键词
粗糙集
神经网络
规则约简
立地条件
rough set
neural networks
rule reduction
site condition