摘要
设G为这样的有限图:它除含两个由一根线段连接的圈外不含其它圈,而且两个圈上的分支数相同.证明了连续自映射f∶G→G的熵为零当且仅当存在k≤[(Edg(G)+2End(G)+11)/2]个不同的奇数n1,n2,…,nk,使得Per(f)Uki=1U∞j=1ni2j,其中Edg(G)、End(G)分别表示G的边数、端点数.
Let GLet be a graph which contains no simple closed curve exact two circles which connected by a line. We prove that a continuous map f: G→G has zero topological entropy if and only if there exit at most k≤ [ (Edg(G) +2End(G) + (f) 11 )/21 different odd numbers n1 ,n2,…nk such that Per Per(f) belong to Ui=1^k uj=1^∞{n,2^f}.where Edg(G) is the number of edges of G. End(G)is the number of end points of (G).
出处
《钦州学院学报》
2008年第3期31-33,共3页
Journal of Qinzhou University
关键词
图
拓扑熵
逆极限
周期
Graph
Topological
Inverselimit
Period