期刊文献+

熵与周期的关系

The Relations of Entropy and Period
下载PDF
导出
摘要 设G为这样的有限图:它除含两个由一根线段连接的圈外不含其它圈,而且两个圈上的分支数相同.证明了连续自映射f∶G→G的熵为零当且仅当存在k≤[(Edg(G)+2End(G)+11)/2]个不同的奇数n1,n2,…,nk,使得Per(f)Uki=1U∞j=1ni2j,其中Edg(G)、End(G)分别表示G的边数、端点数. Let GLet be a graph which contains no simple closed curve exact two circles which connected by a line. We prove that a continuous map f: G→G has zero topological entropy if and only if there exit at most k≤ [ (Edg(G) +2End(G) + (f) 11 )/21 different odd numbers n1 ,n2,…nk such that Per Per(f) belong to Ui=1^k uj=1^∞{n,2^f}.where Edg(G) is the number of edges of G. End(G)is the number of end points of (G).
作者 伍超林
出处 《钦州学院学报》 2008年第3期31-33,共3页 Journal of Qinzhou University
关键词 拓扑熵 逆极限 周期 Graph Topological Inverselimit Period
  • 相关文献

参考文献1

二级参考文献11

  • 1Llibre, J., Misiurewizc, Ivi.: Horseshoes, entropy and periods for graph maps. Topology, 32, 649-664 (1993).
  • 2Alsedá, LI., Llibre, J., Misiurewicz, M.: Combinatorial dynamics and entropy in dimension one. Advanced Series on Nonlinear Dynamics, 5, World Scientific, Singapore, p. 181, (1993).
  • 3Blokh, A. M.: Trees with snowflakes and zero entropy maps. Topology, 33, 379-396 (1994).
  • 4Nadler, S. B. Jr.: Continuum Theorv. Pure and ADDI. Math., 158, Marcel Dekker, Inc., New York, 1992.
  • 5Block, L. S., Coppel, W. A.: Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer,Berlin, p. 229 (1992).
  • 6Barge, M., Diamond, C.: The dynamics of continuous maps of finite graphs through inverse limits. Trans.Amer. Math. Soc., 334, 773-790 (1994).
  • 7Roe, R.: Monotone decompositions of inverse limit spaces based on finite graphs. Topo. Appl., 34, 235-245(1990).
  • 8Lü, J., Xiong, J. C., Ye, X. D.: The inverse limit space and the dynamics of a graph map. Topo. Appl.,107, 275-295 (2000).
  • 9Kato, H., Ye, X. D.: On Burgess's Theorem and related problems. Proc. Amer. Math. Soc., 128, 2501-2506(2000).
  • 10Alsedá, LI., Mafiosas, F., Mumbrd, P.: Minimizing topological entropy for continuous maps on graphs.Erqodic Theory Dynamical Systems, 20, 1559-1576 (2000).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部