期刊文献+

颗粒吸收系数T-R法测定中光程放大系数的研究 被引量:2

A New Approach to Correct for Pathlength Amplification in Measurements of Particulate Spectral Absorption by the Quantitative Filter Technique
下载PDF
导出
摘要 由颗粒散射作用引起的光程放大效应是影响水体中颗粒吸收系数测量准确性的关键因素.本文采用T-R测定方法(Transmittance-Reflectance method)和将比色皿置于积分球内的测定方法,测量6种样品的颗粒在滤膜上、悬浮液中的光学密度,计算光程放大系数β,利用传统拟合方法获得较为稳定的光程放大系数(β-1=0.507+0.636×ODf).测量结果同时表明,光程放大系数具有波长依存特性,呈现滞后效应;本文提出新的引入波长(λ)、滤膜上颗粒光学密度(ODf)2个参数的二元非线性拟合方法,得到β-1(λ)=(0.135+0.225×ODf(λ))×λ0.203,该方法实现了对光程放大效应更为精确的校正. A new method is described that takes into account the hysteresis effect of pathlength amplification in measurements of particulate spectral absorption by the quantitative filter technique. Optical densities were measured on a variety of sample types,including phytoplankton cultures and pool waters. Optical densities of particles on glass-fiber filters ODI were obtained by using T-R (Transmittance-Reflectance) method and those of particles in suspension ODf were obtained by placing samples inside an integrating sphere. A univariate function for pathlength amplification factor β was thus derived, i. e. β^-1 = 0. 507 + 0. 636 × ODf, which appeared consistently applicable to a variety of samples compared with previously published T method based formulae. However. the results also showed that β varied with wavelength, so called hysteresis effect. We therefore attempted to use a bivariate function of β, i. e. β^-1 (λ) = (0. 135 +0. 225 × ODf (λ) × λ^0.203. OD SMS predicted by the bivariate function fitted better with the measured OD SMS than that by the univariate function.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期556-561,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(40331004 40376031) 国家863计划项目(2006AA09A302) 厦门大学新世纪人才计划资助
关键词 QFT(quantitative FILTER technique) T-R方法 光程放大系数 滞后效应 颗粒吸收光谱 QFT (quantitative filter technique) T-R method pathlength amplification factor hysteresis effect particulate spectral absorption
  • 相关文献

参考文献18

  • 1Yentsch C S. Measurement of visible light absorption by particulate matter in the ocean[J]. Limnology and Oceanography, 1962,7 : 207-217.
  • 2Mitchell B G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)[C]//Proceedings of SPIE. Bellingham,WA,1990,1302:137-148.
  • 3Mitchell B G,Bricaud A,Carder K,et al. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples[C]//Fargion G S, Mueller J L. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revision 2. Greenbelt, Maryland.. NASA Goddard Space Flight Space Center,2000 : 125-153.
  • 4Tassan S, Ferrari G M. An alternative approach to absorption measurements of aquatic particles retained on iflters[J]. Limnology and Oceanography, 1995,40 (8):1358-1368.
  • 5Butler W L. Absorption of light by turbid materials[J]. J Opt Soc Am,1962,52:292-299.
  • 6Kishino M, Takahashi M, Okami N, et al. Estimation of the spectral absorption coefficients of phytoplankton in the sea[J]. Bulletin of Marine Science, 1985,37 (2) : 634-642.
  • 7Roesler C S. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique[J]. Limnology and Oceanography, 1998,43(7) : 1649-1660.
  • 8Bricaud A,Stramski D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea[J]. Limnology and Oceanography, 1990,35(3): 562-582.
  • 9Mitchell B G, Kiefer D A. Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton[J]. Deep-Sea Res, 1988,35: 639-663.
  • 10Cleveland J S, Weidemann A D. Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters[J]. Limnology and Oceanography, 1993,38(6) ;1321-1327.

同被引文献31

  • 1李刚.水体吸收衰减系数测量仪定标技术[J].海洋技术,2005,24(3):120-123. 被引量:5
  • 2宋庆君,唐军武.黄海、东海海区水体散射特性研究[J].海洋学报,2006,28(4):56-63. 被引量:67
  • 3Mitchell B G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT)[C]HProceeding of SPIE. Bellingham,WA, 1990,1302 : 137-- 148.
  • 4Yentsch C S. Measurement of visible light absorption by particulate matter in the ocean[J]. Limnology and Oceanography, 1962,7:207--217.
  • 5Kishino M, Takahashi M, Okami N, et al. Estimation of the spectral absorption coefficients of phytoplankton in the sea[J]. Bulletin of Marine Science, 1985,37(2) :634-- 642.
  • 6Brieaud A,Stramski D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea[J]. Limnology and Oceanography, 1990,35 (3) : 562--582.
  • 7Tassan S, Ferrari G M. An alternative approach to absorption measurements of aquatic particles retained on filters[J]. Limnology and Oceanography, 1995,40 (8) : 1358 --1368.
  • 8Mitchell B G,Bricaud A, Carder K, et al. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples[C]// Fargion G S, Mueller J L. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2. Greenbelt,Maryland: NASA Goddard Space Flight Space Center,2000 : 125 -- 153.
  • 9Butler W L. Absorption of light by turbid materials[J]. Journal of the Optical Society of America, 1962,52:292-- 299.
  • 10Cleveland J S, Weidemann A D. Quantifying absorption by aquatic particles: a multiple scattering correction for glassfiber filters [-J ]. Limnology and Oceanography, 1993, 38 (6) :1321--1327.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部