期刊文献+

乌贼游动机理及其在仿生水下机器人上的应用 被引量:16

Swimming Mechanism of Squid/Cuttlefish and Its Application to Biomimetic Underwater Robots
下载PDF
导出
摘要 针对大多数机器鱼未采用弹性机制来提高能量利用效率和耐压能力低等的不足,对拥有高超游动能力,具有耐压结构的乌贼进行研究。分析乌贼喷射和鳍波动推进的游动机理,给出喷射推力、喷射和整周期流体推进效率方程。乌贼复合游动方式的优点是高速性和低速性均很好,能瞬时改变游动方向,噪声低,以及即使喷射速度低于周围流体速度,也能产生推力。为深入说明乌贼游动机理,研究乌贼外套膜和鳍这两套运动系统的肌肉性静水骨骼结构及其动作原理。肌肉性骨骼不但具有支撑躯体,进行动作和输出力的作用,还具有良好的耐压能力。大多数乌贼体内没有充气组织,外套膜腔内外静压平衡,进一步提高了它们的耐压能力。乌贼动作时,弹性机制能够减少能量消耗,提高能量利用效率。若能将乌贼的游动方式、肌肉组织结构和弹性机制等特点应用到仿生水下机器人上,将使其更加高效、灵活和耐压。 According to the shortcomings of most robot fish, such as not incorporating elastic mechanism to improve energy efficiency and poor pressure resistance capability, squid/cuttlefish, which have excellent swimming capability and pressure-resistant structure, are studied. Swimming mechanism of squid/cuttlefish jetting and fin undulating propulsion is analyzed, and the equations of jet thrust, propulsive efficiency of jetting period and whole hydrodynamic propulsion cycle are given. The advantages of squid/cuttlefish compound swimming are good performance at both high and low speeds, being capable of changing swimming direction immediately, low noise, and that thrust can be generated even if jet velocity is slower than that of the surrounding fluid. In order to explain swimming mechanism in depth, the muscle arrangements and functions of mantle and fin muscular hydrostats, the two locomotory systems, are studied. The muscular hydrostats not only serve to the skeleton support of body, to carry out movement and to generate force, but also have considerable pressure-resistant capability. The hydrostatic pressure in and out of the mantle of most squid/cuttlefish is equal due to no gas filled tissue in their body, which improves their pressure-resistant capability further. During the movement, energetic efficiency is improved because energy is saved by the elastic spring mechanism. If the characteristics of swimming mechanism, muscular and elastic mechanism could be applied to biomimetic underwater robot, the robot would be more efficient, flexible and pressure-resistant.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第6期1-9,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(50775049)
关键词 乌贼 游动机理 肌肉性静水骨骼 弹性机制 仿生乌贼机器人 Squid/cuttlefish Swimming mechanism Muscular hydrostat Elastic mechanism Biomimetic robot squid/cuttlefish
  • 相关文献

参考文献18

  • 1王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:22
  • 2王光明,胡天江,李非,沈林成.长背鳍波动推进游动研究[J].机械工程学报,2006,42(3):88-92. 被引量:23
  • 3张代兵,谢海斌,林龙信,沈林成.柔性长鳍仿生水下推进器测控系统的设计与实现[J].计算机测量与控制,2007,15(2):205-207. 被引量:3
  • 4BARTOL I K, PATTERSON M R, MANN R. Swimming mechanics and behavior of the shallow-water brief squid Lolliguncula brevis[J]. The Journal of Experimental Biology, 2001, 204: 3 655-3 682.
  • 5ANDERSON E J, DEMONT M E. The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure[J]. The Journal of Experimental Biology, 2000, 203: 2851-2863.
  • 6ANDERSON E J, GROSENBAUGH M A. Jet flow in steadily swimming adult squid[J]. The Journal of Experimental Biology , 2005, 208:1 125-1 146.
  • 7MACGILLIVRAY P S, ANDERSON E J, WRIGHT G M, et al. Structure and mechanics of the squid mantle[J]. The Journal of Experimental Biology , 1999, 202: 683-695.
  • 8KIER W M. Electromyography of the fin musculature of the cuttlefish Sepia officinalis[J]. The Journal of Experimental Biology, 1989, 143: 17-31.
  • 9KIER W M, THOMPSON J T. Muscle arrangement, function and specialization in recent coleoids[J]. Berliner Palaobiol. Abh., 2003, 3: 141-162.
  • 10O'DOR R K. The forces acting on swimming squid[J]. The Journal of Experimental Biology, 1998, 137: 421-442.

二级参考文献30

  • 1柳吉龄,张宇河,张洁.基于CAN总线的运动控制系统的设计[J].计算机测量与控制,2005,13(7):683-685. 被引量:13
  • 2谢海斌,沈林成,胡天江.“尼罗河魔鬼”柔性长鳍运动曲面建模与仿真[J].国防科技大学学报,2005,27(5):62-66. 被引量:8
  • 3Triantafyllou M S, Triantafyllou G S. An efficient swimming machine. Scientific American, 1995(5): 64~70.
  • 4Anderson J M, Kerrebrock P A. The vorticity control unmanned undersea vehicle(VCUUV)-an autonomous vehicle employing fish swimming propulsion and maneuvering. In: Proc. 10th Int. Symp. Unmanned Untethered Submersible Technology, NH, 1997, 9:189~195.
  • 5Fukuda T. Distributed type of actuators of shape memory alloy and its application to underwater mobile robotic mechanisms. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, 1990:1 316~1 321.
  • 6Fukuda T. Mechanism and swimming experiment of micro mobile robot in water. In: Proceedings of the 1994 IEEE Conference on Robotics and Automation, 1994: 814~819.
  • 7Naomi K. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. Oceanic Engineering, 2000(25): 121~129.
  • 8Naomi K. Application of swimming functions of aquatic animals to autonomous underwater vehicles. In: Oceans Conference Record, 1999, 9:1 418~1 424.
  • 9Naomi K, Tadahiko I. Guidance and control of fish robot with apparatus of pectoral fin motion. In: Proceedings of the International Conference on Robotics and Automation,1998, 5:446~451.
  • 10Guo S X, Fukuda T, Asaka K. Fish-like underwater microrobot with 3 DOF. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2002(1): 738~743.

共引文献44

同被引文献155

引证文献16

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部