期刊文献+

201×7树脂对铁氰络合物的吸附动力学 被引量:1

Adsorption kinetics of 201 × 7 resin for iron cyanocomplexes
下载PDF
导出
摘要 对201×7树脂吸附铁氰化合物的过程进行动力学研究。结果表明,201×7树脂对铁氰化合物有很好的吸附效果。在298K时,201×7树脂对亚铁氰化络合离子[Fe(CN)6]^4-和铁氰化络合离子[Fe(CN)6]^3-的静态饱和吸附量分别为8.620和12.072mg/mL。用均相颗粒扩散模型和收缩核模型对吸附参数进行描述,表明201×7树脂对[Fe(CN)6]^3-和[Fe(CN)6]^4-的吸附过程均属于液膜扩散控制。由树脂对[Fe(CN)6]^4-和[Fe(CN)6]^3-的等温吸附线得到Freundlich常数n分别为4.786和6.145:吸附过程中分离系数S和选择系数K均大于1,表明201×7树脂对[Fe(CN)6]^4-和[Fe(CN)6]^3-两种络合离子都是容易吸附的,而且[Fe(CN)6]^3-离子比[Fe(CN)6]^4-离子更容易被吸附。 Kinetics measurements on the adsorption of iron cyanocomplexes with the 201 × 7 ion-exchange resin were investigated. The results show that the 201 × 7 resin has good adsorption ability for iron cyanocomplexes. The static saturated adsorptive capacity at 298 K is 8.620 and 12.072 mg/mL for ferrocyanide [Fe(CN)6]^4- and ferdcyanide [Fe(CN)6]^3-, respectively. Analyses of the respective rate data in accordance with homogeneous particle diffusion model and shell progressive model are used to explain the ions adsorption kinetics, which indicates that the controlling step of adsorbing [Fe(CN)6]^3- and [Fe(CN)6]^4- is liquid film diffusion. Isotherm adsorption curves deduce that Freundlich constant, n, is 4.786 and 6.145 for [Fe(CN)6]^4- and [Fe(CN)6]^3-, respectively. In adsorption process, the separation factor S and selectivity coefficient K are both greater than 1. The facts indicate that both [Fe(CN)6]^4- and [Fe(CN)6]^3- are easily adsorbed on 201 × 7 resin, furthermore, the adsorption of [Fe(CN)6]^3- on 201 × 7 resin is easier than that of [Fe(CN)6]^4-.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第E01期166-171,共6页 The Chinese Journal of Nonferrous Metals
关键词 201×7树脂 铁氰化物 吸附 动力学 201 × 7 resin iron cyanocomplex adsorption kinetics
  • 相关文献

参考文献15

  • 1LEAO V A, CIMINELLI V S T, COSRA R S. Cyanide recycling using strong-base ion exchange resins [J]. Journal of Metals, 1998, 50(I0): 71-74.
  • 2FERNANDO K, TRAN T, LAING S, KIM K J. The use of ion exchange resins for the treatment of cyanidation tailings (part 1): Process development of selective base metal elution [J]. Minerals Engineering, 2002, 15:1163-1171.
  • 3BACHILLER D, TORRE M, RENDUELES M. Cyanide recovery by ion exchange from gold ore waste effluents containing copper [J]. Minerals Engineering, 2004, 17: 767-774.
  • 4兰新哲,宋永辉,廖赞,何敏.含氰尾液综合回收研究[J].稀有金属,2005,29(4):493-497. 被引量:11
  • 5SHU Zeng-Nian, XIONG Chun-hua, WANG Xu. Adsorption behavior and mechanism of amino methylene phosphonic acid resin for Ag(Ⅰ) [J]. Trans Nonferrous Met Soc China, 2006, 16(3): 700-704.
  • 6熊春华,沈秋仙.Adsorption of Er(Ⅲ ) and Its Mechanism on Diglycolamidic Acid Resin[J].Journal of Rare Earths,2002,20(5):492-496. 被引量:14
  • 7LEAO V A, LUKEY G C. The dependence of sorbed copper and nickel cyanide speciation on ion exchange resin type [J]. Hydrometallurgy, 2001, 61:105-119.
  • 8HELFFERICH F. Ion exchange [M]. New York: McGraw-Hill, 1962.
  • 9PETRUZZELLI D, LIBERTI L, PASSINO R, HELFFERICH G, HWANG Y L. Chloride/sulfate exchange kinetics: solution for combined film and particle diffusion control [J]. React Polym, 1987, 5: 219-227.
  • 10CORTINA J L, WARSHAWSKY A, KAHANA N, KAMPEL V SAMPAIO C H, KAUTZMANN R M. Kinetics of goldcyanide extraction using ion-exchange resins containing piperazine functionality [J]. Reactive & Functional Polymers, 2003, 54: 25-35.

二级参考文献17

  • 1何敏,朱国才,兰新哲.D296R阴离子交换树脂吸附氰化物的物理化学研究[J].金属矿山,2004,33(12):62-65. 被引量:6
  • 2廖赞,朱国才,兰新哲.用强碱性阴离子交换树脂回收氰化物的研究[J].黄金,2005,26(3):37-42. 被引量:8
  • 3[2]Lukey Grant C, Jannie S J, Van Deventer. The speciation of gold and copper cyanide complexes on ion-exchange resins con- taining different functional groups [J]. Reactive & Functional Polymers, 2000, 44: 121.
  • 4[3]Bachiller D. Cyanide recovery by ion exchange from gold ore waste effluents containing coppes [J]. Minerals Engineering, 2004, 17: 767.
  • 5[4]Silva A L, Costa R A, Martins A H. Cyanide regeneration by AVR process using ion exchange pomymeric resins [J]. Minerals Engineering, 2003, 16: 555.
  • 6[5]Parga J R, Shukla S S, Carrillo Pedroza F R. Destruction of cyanide waste solutions using cilorine dioxide, ozone and titania sol [J]. Waste Management, 2003, 23: 183.
  • 7[7]Miltzarek G L, Sampaio C H. Cyanide recovery in hydrometallurgical plants: use of synthetic solutions constituted by metallic cyanide complexes [J]. Minerals Engineering, 2002, 15: 75.
  • 8[9]Lukey G C. Raman study on the speciation of copper cyanide complexes in highly saline solutions [J]. Hydrometallurgy, 1999, 53: 233.
  • 9[10]Ciminelli S T. Ion exchange resins in the gold industry [J]. Met. Mat. Soc., 2002, 54(10): 35.
  • 10[15]Lu Jianming, Dreisinger D B. Thermodynamics of the aqueous copper-cyanide system [J]. Hydrometallurgy, 2002, 66: 23.

共引文献22

同被引文献13

  • 1Jones C W. Applications of hydrogen peroxide and derivatives. RSC Clean Technology Monographs[M]. Clark JH, editor. University of York, UK: 1999, 217.
  • 2Ponce De Leon C, Pletcher D. Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell[J]. Applied Electrochemistry, 1995, (25): 307.
  • 3Carlos Antonio Pineda Arellano, Susana Silva Martinez. Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode[J]. International Journal of Hydrogen Energy, 2007, (32): 3163-3169.
  • 4Takashi Kamachi, Tomonori Nakayama, Kazunari Yoshizawa. Mechanism and Kinetics of Cyanide Decomposition by Ferrate[J]. The Chemical Society of Japan, 2008, (10): 1212-1218.
  • 5Ria Yngard, Seelawut Damrongsiri, Khemarath Osathaphan. Ferrate(Vl) oxidation of zinc- cyanide complex[J]. Chemosphere, 2007, (69): 729-735.
  • 6V. Augugliaro, V. Loddo, G. Marci, et al. J. LopezMunoz. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions[J]. Catal. 1997, 166(2): 272-283.
  • 7Barakat M A, Chen Y T, Huang C P. Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2004, (53): 13-20.
  • 8Voelker B M, Sedkak D L, Zafiriou O C. Chemistry of superoxideradical in seawater: reaction with organic Cu complexes, Environmental Technology, 2000, (34): 1036-1042.
  • 9Fatma Gurbuz, Hasan Ciftci, Ata Akcil. Biodegradation of cyanide containing effluents by scenedesmus obliquus[J]. Journal of Hazardous Materials, 2009, (162): 74-79.
  • 10Kaewkannetra P, lmai T, Garcia-Garcia F J, et al. Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system[J]. Journal of Hazardous Materials, 2009, (172): 224-228.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部