期刊文献+

LiMn2O4/Li4Ti5O12复合材料的制备与电化学性能 被引量:1

Synthesis and electrochemical properties of LiMn2O4/Li4Ti5O12 composite
下载PDF
导出
摘要 以LiMn2O4、醋酸锂和钛酸四丁酯为原料,乙醇为溶剂,采用原位复合法制备LiMn2O4/Li4Ti5O12复合材料。采用X射线衍射分析、红外光谱、扫描电镜和电化学测试等手段对复合材料进行表征。结果表明,在LiMn2O4/Li4Ti5O12复合材料中晶态的LiMn2O4表面被无定形结构的Li4Ti5O12包覆,但Li4Ti5O12的存在并没有改变LiMn2O4的晶体结构。由于Li4Ti5O12的包覆,LiMn2O4的倍率性能和高温性能都得到显著提高:室温下2.0C放电时20次循环后LiMn2O4/Li4Ti5O12复合材料的可逆容量达到108.4mA·h/g,平均每次循环的容量损失只有0.053%;而55℃1.0C放电时,经60次循环后LiMn2O4/Li4Ti5O12的放电容量为109.9mA·h/g,平均每次循环的容量损失为0.036%。 LiMn2O4/Li4Ti5O12 composite was synthesized by in-situ composite technique using LiMn2O4, lithium acetate, tetrabutyl titanate as starting materials and was characterized by various electrochemical methods in combination with X-ray diffractometry (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). The results show that the amorphous Li4Ti5O12 is coated on the surface of crystalline LiMn2O4 to form the LiMn2O4/Li4Ti5O12 composite. The structure of LiMn2O4 does not change due to introduction of Li4Ti5O12. Coated with Li4Ti5O12, the rate capability and high temperature cyclability of LiMn2O4 are improved greatly. At room temperature, the discharge capacity of LiMn2O4/Li4Ti5O12 composite is more than 108.4 mA·h/g and the capacity loss per cycle is only 0.053% after cycling 20 times at 2.0C. While at 55 ℃, the discharge capacity of LiMn2O4/Li4Ti5O12 composite is more than 109.9 mA·h/g and the capacity loss per cycle is only 0.036% after cycling 60 times at 1.0C.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第E01期284-289,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(20376086) 中国博士后科学基金资助项目(2005037700) 湖南省自然科学基金资助项目(07JJ3014) 湖南省教育厅科研项目(07A058) 中南大学博士后科学基金资助项目(2004107)
关键词 钛酸锂 锰酸锂 原位复合法 锂离子电池 Li4Ti5O12 LiMn2O4 in-situ composite technique lithium ion batteries
  • 相关文献

参考文献17

  • 1GUYOMARD D, TARASCON J M. Li Metal-free recharge, able LiMn2O4/carbon cells: Their understanding and optimization[J]. J Electrochem Soc, 1992, 139(4): 937-948.
  • 2AMATUCCI G G, BLYR A, SIGALA C, ALFONSE P, TARASCON J M. Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997, 104(1/2): 13-25.
  • 3ANTONINI A, BELLITTO C, PASQUALI M, PISTOIA G. Factors affecting the stabilization of M_n spinel capacity upon stating and cycling at high temperatures[J]. J Electrochem Soc, 1998, 145(8): 2726-2732.
  • 4WU Xian-ming, CHEN Shang, HE Ze-qiang, MA Ming-you, XIAO Zhuo-bing, LIU Jian-ben. Solution-derived lithium manganese oxide thin films with silver additive and their characterization[J]. Materials Chemistry and Physics, 2007, 101(1): 217-222.
  • 5DOKKO K, HORIKOSHI S, ITOH T, NISHIZAWA M, MOHAMEDI M, UCHIDA I. Microvoltammetry for cathode materials at elevated temperatures: Electrochemical stability of single particles[J]. J Power Sources, 2000, 90(1): 109-115.
  • 6GNANARAJ J S, POL V G, GEDANKEN A, AURBACH D. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method[J]. Electrochem Comm, 2003, 5(11): 940-945.
  • 7LEE S W, KIM K S, MOON H S, KIM H J, CHO B W, CHO W I, JU J B, PARK J W. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery[J]. J Power Sources, 2004, 126(1/2): 150-155.
  • 8DEISS E. Spurious chemical diffusion coefficients of Li^+ in electrode materials evaluated with GITT[J]. Electrochimica Acta, 2005, 50(14): 2927-2932.
  • 9WU Xian-ming, HE Ze-qiang, CHEN Shang, MA Ming-you, XIAO Zhuo-bing, LILT Jian-ben. The effect of thickness on the properties of solution-deposited LiMn204 thin films[J]. Materials Chemistry and Physics, 2007, 1050): 58-61.
  • 10WU Xianming,HE Zeqiang,MA Mingyou,XIAO Zhuobing,XU Mingfei.LiMn_2O_4 thin films derived by rapid thermal annealing and their performance as cathode materials for Li ion battery[J].Rare Metals,2006,25(6):620-624. 被引量:2

二级参考文献42

  • 1West W.C.,Whitacre J.F.,and Lim J.R.,Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films,J.Power Sources,2004,126:134.
  • 2Lee S.J.,Bae J.H.,Lee H.W.,Baik H.K.,and Lee S.M.,Electrical conductivity in Li-Si-P-O-N oxynitride thin-films,J.Power Sources,2003,123:61.
  • 3Moon H.S.and Park J.,Improvement of cyclability of LiMn2O4 thin films by transition-metal substitution,J.Power Sources,2003,119-121:717.
  • 4Yoon Y.S.,Kim J.S.,and Choi S.H.,Structural and electrochemical properties of vanadium oxide thin films grown by d.c.and r.f.reactive sputtering at room temperature,Thin Solid Films,2004,460:41.
  • 5Jones S.D.and Akridge J.R.,Development and performance of a rechargeable thin-film solid-state microbattery,J.Power Sources,1995,54:63.
  • 6Bates J.B.,Dudney N.J.,Neudecker B.,Ueda A.,and Evans C.D.,Thin-film lithium and lithium-ion batteries,Solid State Ionics,2000,135:33.
  • 7Park Y.J.,Kim J.G.,Kim M.K.,Chung H.T.,Um W.S.,Kim M.H.,and Kim H.G.,Fabrication of LiMn2O4 thin films by sol-gel method for cathode materials of microbattery,J.Power Sources,1998,76:41.
  • 8Matsuda K.and Taniguchi I.,Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis,J.Power Sources,2004,132:156.
  • 9Eftekhari A.Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4cathode,Solid State Ionics,2004,167:237.
  • 10Yasutoshi I.,Minoru I.,Takeshi A.,and Zempachi O.,Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties,J.Power Sources,2001,94:175.

共引文献6

同被引文献29

  • 1Nakahara K, Nakajima R, Matsushima T, et al. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. Journal of Power Sources, 2003, 117: 131-136.
  • 2Erin M S, Scott J B, Jung H K, et al. Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties [J]. Chem Mater, 2006, 146 (2): 482-489.
  • 3Ohzuku T, Tatsumi K, Matoba N, et al. Electrochem/stry and structural chemistry of Li [CrTi]O4 (Fd3m) in nonaqueous lithium cells[J]. J Electrochem Soc, 2000, 147: 3592-3597.
  • 4高剑 何向明 姜长印 等.钛在锂离子电池材料中应用.稀有金属材料与工程,2005,34(3):725-728.
  • 5Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources, 1999, 81- 82: 300-305.
  • 6Ohzuku T, Ueda A, Yamamoto N, et al. Factor affecting the capacity retention of lithium-ion cells [J]. Journal of Power Sources, 1995, 54(1): 99-102.
  • 7Ganesan M, Dhananjeyan M V T, Sarangapani K B, et al. Solid state rapid quenching method to synthesize micronsize Li4Ti5O12[J]. J Electroceram, 2007, 18: 329-337.
  • 8Peramunage D, Abraham K M. The Li4Ti5O12/PAN electrolyte/ LiMn2O4 reehargeable battery with passivation-free electrodes [J]. J Electroehem Soe, 1998, 145(8), 2615-2622.
  • 9Bach S, Pereira-Ramos J P, Baftler N, et al. Electrochemical properties of sol-gel Li3/4Ti5/3O4 [J]. Journal of Power Sources, 1999, 81-82: 273-276.
  • 10Rho Y H, Kanamura K, Fujisaki M, et al. Preparation of Li4Ti5O12 and LiCoO2 thin fdm electrodes from precursors obtained by sol-gel method[J]. Solid State Ionics, 2002, 151: 151-157.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部