期刊文献+

The Wavenumber-Frequency Characteristics of the Tropical Waves in an Aqua-Planet GCM 被引量:2

The Wavenumber-Frequency Characteristics of the Tropical Waves in an Aqua-Planet GCM
下载PDF
导出
摘要 Based on the aqua-planet experiments, the wavenumber-frequency characteristics of tropical waves and their influencing factors in SST distribution and the convective parameterization scheme are investigated using the spectral atmospheric general circulation model (SAMIL). Space-time spectral analysis is used to obtain the variance of convectively coupled tropical waves. In the Control experiment with maximum SST located at the equator the simulated tropical-wave behaviors are in agreement with those in observations and theoretical solutions. When the maximum SST is located at 5°N, the symmetric and antisymmetric waves are much weaker than those in the control experiment, suggesting that tropical wave activities are very sensitive to the SST distributions. Importantly, the variance maximum of Madden-Julian oscillation (MJO) is found to occur around 5°N, which suggests that the development of the MJO depends largely on the latitude of maximum SST. Furthermore, the seasonal variations of MJO may be mainly caused by the seasonal variations of the maximum SST. The experiment results with two different cumulus schemes the Manabe moist convective adjustment and Zhang-McFarlane (ZM) convective scheme, were also compared to examine the impacts of convective parameterization. Weakened variances of each individual tropical wave when the ZM scheme is used suggest that the ZM scheme is not favorable for the tropical wave activities. However, the wave characteristics are different when the ZM scheme is used in different models, which may imply that the simulated basic state is important to the meridional distributions of the waves. The MJO signals suggest that the parameterization scheme may have great influence on the strength, but have less direct impact on the MJO distribution. The frequency of the tropical waves may be associated with the moisture control of convection and the large-scale condensation scheme used in the model. Based on the aqua-planet experiments, the wavenumber-frequency characteristics of tropical waves and their influencing factors in SST distribution and the convective parameterization scheme are investigated using the spectral atmospheric general circulation model (SAMIL). Space-time spectral analysis is used to obtain the variance of convectively coupled tropical waves. In the Control experiment with maximum SST located at the equator the simulated tropical-wave behaviors are in agreement with those in observations and theoretical solutions. When the maximum SST is located at 5°N, the symmetric and antisymmetric waves are much weaker than those in the control experiment, suggesting that tropical wave activities are very sensitive to the SST distributions. Importantly, the variance maximum of Madden-Julian oscillation (MJO) is found to occur around 5°N, which suggests that the development of the MJO depends largely on the latitude of maximum SST. Furthermore, the seasonal variations of MJO may be mainly caused by the seasonal variations of the maximum SST. The experiment results with two different cumulus schemes the Manabe moist convective adjustment and Zhang-McFarlane (ZM) convective scheme, were also compared to examine the impacts of convective parameterization. Weakened variances of each individual tropical wave when the ZM scheme is used suggest that the ZM scheme is not favorable for the tropical wave activities. However, the wave characteristics are different when the ZM scheme is used in different models, which may imply that the simulated basic state is important to the meridional distributions of the waves. The MJO signals suggest that the parameterization scheme may have great influence on the strength, but have less direct impact on the MJO distribution. The frequency of the tropical waves may be associated with the moisture control of convection and the large-scale condensation scheme used in the model.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期541-554,共14页 大气科学进展(英文版)
关键词 tropical wave SAMIL convective processes tropical wave SAMIL convective processes
  • 相关文献

参考文献6

二级参考文献59

共引文献133

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部