期刊文献+

An Explicit Scheme for the KdV Equation 被引量:3

An Explicit Scheme for the KdV Equation
下载PDF
导出
摘要 A new explicit scheme for the Korteweg~:le Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations. A new explicit scheme for the Korteweg~:le Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第7期2335-2338,共4页 中国物理快报(英文版)
基金 Supported by the National Basic Research Programme of China under Grant No 2005CB321703, the National Natural Science Foundation of China under Grant Nos 10471067 and 40405019, and the Key Project of Jiangsu NSF (BK2006725).
关键词 KORTEWEG-DEVRIES EQUATION KORTEWEG-DEVRIES EQUATION
  • 相关文献

参考文献17

  • 1Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240
  • 2Feng K and Qin M Z 1987 Lecture Notes in Mathematics vol. 1297 1
  • 3Feng K, Wu H M, Qin M Z and Wang D L 1989 J. Comput. Math. 7(1) 71
  • 4Hairer E, Lubich C and Wanner G 2002 Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations (Berlin: Springer)
  • 5Zhao P F and Qin M Z 2000 J. Phys. A 33(18) 3613
  • 6Abe K and Inoue O 1980 J. Comput. Phys. 34(2) 202
  • 7Huang M Y 1991 Math. Comput. 56 607
  • 8Guo B Y 1985 Acta Math. Scientia 5 337
  • 9Guo B Y 1988 Difference Method for Partial Differential Equations (Beijing: Science Press)
  • 10Ascher U M and McLachlan R I 2004 Appl. Numer. Math. 48 255

同被引文献39

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部