期刊文献+

预条件Gauss-Seidel迭代法 被引量:4

Preconditions Gauss-Seidel iterative method
下载PDF
导出
摘要 Gauss-Seidel迭代法是经典的迭代法,通过提出一种新的预条件因子,证明了在非奇异M-矩阵下该预条件加速了迭代法的收敛性。最后给出数值算例说证明:该预条件迭代格式优于通常的预条件法。 Gauss-Seidel iteration is the classic iterative method. In recent years a variety of preconditions Gauss-sei-del iterative methods have been raised. In this paper, we first present a preconditions factor and then prove the accelerated convergence of the iteration method by the preconditions under the nonsingular M-matrix. Numerieal examples show that the precondition is superior to the usual preconditions law.
出处 《桂林电子科技大学学报》 2008年第3期258-260,共3页 Journal of Guilin University of Electronic Technology
关键词 预条件因子 非奇异M-矩阵 GAUSS-SEIDEL迭代法 pre-conditions factor non-singular M-matrix Gauss-Seidel iteration method
  • 相关文献

参考文献6

  • 1HIROSHI NIKI, KYOUJI HARADA, MUNENORI MORIMOTO, et al. The survey of preeonditiononers used for accelerating the rate of eonvergenee in the Gauss-Seidel method [J].Journal of Computational and Applied Mathematics, 2004, 165 (5) ,587-600.
  • 2MORIMOTO M, KOTAKEMORI H, KOHNO T, NIKI H. The Gauss-Seidel iteration with preeonditioner (I+R)[J]. Indust. Appl. Math. ,2003(13) :439-445.
  • 3LI W,SUN W W. Modified Gauss-seidel type methods and Jaeobi type methods for Z-matrices [J]. Linear Algebra Appl. , 2000,317(1) :227-240.
  • 4KOHNO T, KOTAKEMORI H. NIKI H,VSOF M. Improving the modified Gauss-Sedel method for Z-matrices[J]. Linear Algebra Appl. ,1997(267) :113-123.
  • 5KOTAKEMORI H, NIKI H,OKAMOTO N. Accelerated iteratire method for Z-matrices [J]. Comput. Appl. Math. , 1996 (75) : 87-97.
  • 6SONG Y Z. Comparisons of nonnegative splittings of matrices [J]. Linear Algebra Appl. ,1991:154-156,433-455.

同被引文献31

  • 1冯志鑫,李阳,宋岱才.F型广义Z-矩阵与M-矩阵的几个性质[J].辽宁石油化工大学学报,2005,25(2):92-94. 被引量:2
  • 2李爱娟,畅大为.预条件Jacobi迭代方法及比较定理[J].西北师范大学学报(自然科学版),2005,41(5):21-23. 被引量:2
  • 3雷刚,王慧勤.一类新预条件下AOR迭代法收敛性的讨论[J].安徽大学学报(自然科学版),2007,31(3):1-4. 被引量:4
  • 4Niki H,Harada K,Morimoto M,et al.The survey of preconditioners used for accelerating the rate of convergence in the Grass-Seidel method.Journal of Computational and Applied Mathematics,2004;165(5):587-600.
  • 5Li W,Sun W W.Modified Grass-Seidel type methods and Jacobi type methods for Z-matrices.Linear Algebra Appl,2000;317(1):227-240.
  • 6Kotakemori H,Niki H,Okamoto N.Accelerated iterative method for Z-matrices.Comput Appl Math,1996;75:89-97.
  • 7Hadjidimos A,Noutsos D,Tzoumas M.More on modifications and improvements of classical iterative schemes for M-matrices.Liner Algebra Appl,2003;364:253-279.
  • 8Varga R S.Matric iterative analysis.Berlin:Prentice Hall Inc.1962.
  • 9Elsner L.Comparisons of weak regular splittings and multisplitting methods.Numer Math,1989;56:283-289.
  • 10Niki H,Harada K,Morimoto M,et al.The survey of preconditioners used for accelerating the rate of convergence in the Grass-Seidel method.Journal of Computational and Applied Mathematics,2004;165(5):587-600.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部