期刊文献+

一种求解矩形packing问题的智能枚举算法 被引量:1

An intelligent enumerative algorithm for solving rectangle packing problem
下载PDF
导出
摘要 矩形packing问题有许多工业应用,如码头货物装载,木材下料,超大规模集成电路(VLSI)布局设计,新闻排版等。国内外已提出了许多求解此问题的算法,如:遗传算法,模拟退火算法以及启发式算法等。在目前已有研究的基础上,提出了一种智能枚举算法,该算法的关键在于设计一种快速有效的枚举策略。用Hopper和Turton提出的21个矩形packing实例对所提出的算法性能进行了实算测试,平均面积未利用率为0.04%,平均计算时间为277.69 s,并求得了其中18个实例的最优解。实算结果表明:该算法对求解矩形packing问题是行之有效的。 Rectangle packing is often applied in industry, such as shipping, timber cutting, very large scale integration (VLSI) floor planning, newspaper layout, and so on. Many algorithms, such as genetic algorithm, simulated annealing and other heuristic algorithms are presented to solve it. Based on existing research, an intelligent enumerative algorithm is proposed, and the key of the algorithm is to design a fast and efficient enumerative strategy. Twenty one instances provided by Hopper and Turton were used to test the performance of the proposed algorithm. The percent of unpacked area and runtime are 0.04% and 277.69 s respectively ; furthermore, 18 instances of them have achieved optimal solutions. The experimental results demonstrate that the presented algorithm is efficient for solving the rectangle packing problem.
出处 《重庆邮电大学学报(自然科学版)》 2008年第4期447-452,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家高技术研究发展计划(06AA01Z414,07AA01Z440) 国家242信息安全计划项目(2007B27) 四川省应用技术研究与开发项目支撑计划(2008GZ0009)
关键词 矩形packing NP完全 智能枚举算法 占角动作 穴度 rectangle packing NP-complete intelligent enumerative algorithm corner-occupying action (COA) cavingdegree
  • 相关文献

参考文献10

  • 1[1]LEUNG J,TAM T,WONG C S,et al.Packing Squares into Square[J].Journal of Parallel and Distributed Computing,1990,10(3):271-275.
  • 2[2]HOPPER E,TURTON B.A Genetic Algorithm for a 2D Industrial Packing Problem[J].Computers & Industrial Engineering,1990,37(2-2):375-378.
  • 3[3]BORTFELDT A.A Genetic Algorithm for the Two-dimen-sional Strip Packing Problem with Rectangular Pieces[J].European Journal of Operational Research,2006,172(3):814-837.
  • 4王春明,于歆杰.求解矩形放置问题的亲属帮助遗传算法[J].清华大学学报(自然科学版),2007,47(4):453-456. 被引量:1
  • 5[5]LESH N,MARKS J,MCMAHON A,et al.New Heuristic and Interactive Approaches to 2D Rectangular Strip Packing[J].ACM Joumal of Experimental Algorithmics.2005,10:1-18.
  • 6[6]ZHANG D F,DENG A S,KANG Y.A Hybrid Heuristic Algorithm for the Rectangular Packing Problem[EB/OL].(2005-05-04)[2008-01-02].http://www.springerlink.com/content/ybu308hfadc5gqmm/.
  • 7[7]WU Y L,HUANG W,LAU S,et al.An Effective Quasihuman Based Heuristic for Solving the Rectangle Packing Problem[J].European Journal of Operational Research,2002,141(2):341-358.
  • 8[8]HUANG W,CHEN D,XU R.A New Heuristic Algorithm for Rectangle Packing[J].Computers & Operations Research,2007,34(11):3270-3280.
  • 9[9]HUANG W,CHEN D.An Efficient Heuristic Algorithm for Rectangle-packing Problem[J].Simulation Modelling Practice and Theory,2007,15(10):1356-1365.
  • 10[10]HOPPER E,TURTON B.An Empirical Investigation of Meta-heuristic and Heuristic Algorithm for a 2D Packing Problem[J].European Journal of Operational Research,2001,128(1):34-57.

二级参考文献10

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 2TANG Xiaoping,TIAN Ruiqi,WONG D F.Fast evaluation of sequence pair in block placement by longest common subsequence computation[J].IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems,2001,20(12):1406-1413.
  • 3Aoese K D,Kahng A A,Muddu S.A new adaptive multi-start technique for combinational global optimizations[J].Operations Research Letters,1994,16:101-113.
  • 4Reeves C R.Landscapes,operators and heuristic search[J].Annals of Operations Research,1999,86:473-490.
  • 5Reeves C R.Yamada T.Genetic algorithms,path relinking,and flowshop sequencing problem[J].Evolutionary Computation,1998,6(1):45-60.
  • 6Imahori S,Yagiura M,Iaaraki T.Local search algorithms for the rectangle packing problem with general spatial cost[J].Math Program,2003,A97:543-569.
  • 7Sathiamoorthy S.LaySeq:A new representation for non-slicing floorplans[C]∥ Proceedings of 6th IEEE VLSI Design and Test Workshop.Bangalore:IEEE Press,2002:317-327.
  • 8LIU Dequan,TENG Hongfei.An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles[J].European Journal of Operational Research,1999,112:413-420.
  • 9Murata H,Fujiyoshi K,Nakatake S,et al.VLSI module placement based on rectangle-packing by the sequence-pair[J].IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems,1996,15(12):1518-1524.
  • 10Murata H,Fujiyoshi K,Kaneko M.VLSI/PCB placement with obstacles based on sequence pair[J].IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems,1997,17(1):60-68.

同被引文献8

  • 1Huang W,Chan D,Xu R.A new heuristic algorithm for rectangie packing[J].Computers & Operations Research,2007,34 (11):3270-3280.
  • 2Belov G,Scheithauer G.Setup and open stacks minimization in one-dimansional stock cutting[J].INFORMS Journal on Computing,2007,19(1):27-35.
  • 3Haessler R W.Controlling cutting pattern changes in one-dimensional trim problems[J].Operations Research,1975,23:483-493.
  • 4Huang W,Chen D.An efficient heuristic algorithm for rectangle-packing problem[J].Simulafion Modelling Practice and Theory,2007,15(10):1356-1365.
  • 5Lodi A,Martello S,Vigo D.Neighborhood search algorithm for the guillotine non-oriented two-dimensional bin packing problem[C] //Voss S,Martello S,Osman I H,et al.Meta-Heuristics:Advances and Trends in Local Search Paradigms for Optimization.Boston:Kluwer Academic,1998:125-139.
  • 6Berkey J O,Wang P Y.Two dimensional finite bin packing algorithms[J].Journal of the Operational Research Society,1987,38:423-429.
  • 7Lodi A,Martello S,Vigo D.A unified tabu search code for multi-dimensional bin packing problems[J].Anaals of Operations Research,2004,131:203-213.
  • 8李长荣.有限制二维板材启发式下料算法研究[J].微计算机信息,2007,23(04X):226-227. 被引量:4

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部