期刊文献+

适于PCT编码的低内存通用树状多带滤波器组实现

Low-memory Implementation of Generic Tree-structured Filter Banks for PCT-based Image Coders
下载PDF
导出
摘要 基于常用的多带滤波器组的紧支撑性及FIFO(First-in First-out)缓存技术提出了一种具有低内存需求的通用树状多带滤波器组(Tree-structured Filter Bank,TSFB)的实现方法SBFB。该方法具有两大特点:(1)生成与全局变换法相同的子带系数,但是内存需求大大减小且仅与图像宽度及采用的TSFB相关;(2)在FIFO缓存中直接生成父子树(Parent-children Tree,PCT)。基于PCT的编码器可直接对位于缓存中的PCT进行编码,而无须在SBFB与编码器之间引入中间缓存。通过分析TSFB的各分解层中的数据流,给出了样本点与子带系数之间的时序关系,并且使用该关系从数学上严格证明了SBFB的正确性。 Based on the compact support property of popular multi-channel filter banks, a low-memory implementation of generic tree-structured filter banks (TSFBs), called the stripe-based tree-structured filter bank (SBFB), is presented by utilizing the first-in first-out (FIFO) buffer technique. The SBFB has two advantages: (1) It produces exactly the same sub-band coefficients as the conventional global implementation of TSFB does, while the memory budget is unrelated to the image height and only dependent on the image width and the TSFB adopted. As a result, the memory budget of SBFB is only a fraction of that of the global implementation; (2) It generates integral parent-children trees (PCTs), which are completely contained in its buffers. The SBFB lends itself to PCT-based coders in that no intermediate buffeting is needed between the SBFB and the coder. By analyzing the dataflow of different levels of TSFB, the relation between the samples and the sub-band coefficients is also attained, by which the correctness of the SBFB is strictly proved.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2008年第3期59-64,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(6057,3027) 国家863高技术研究发展计划资助项目(2007AA801305)
关键词 树状多带滤波器组 低内存实现 父子树结构 tree-structured filter bank low memory implementation parent-children tree
  • 相关文献

参考文献13

  • 1Taubman D S, Marcellin M W. JPEG2000: Image Compression Fundamentals, Standards and Practice[M]. Boston: Kluwer, 2002.
  • 2Tran T D, Nguyen T Q. A Progressive Transmission Image Coder Using Linear Phase Uniform Filterbanks as Block Transforms[J]. IEEE Tram. Image Processing, 1999, 8(11):1493- 1507.
  • 3Andreopoulos Y, et al. A Wavelet-tree Image Coding System with Efficient Memory Utilization[ C]//Proc. IEEE Int. Conf. ASSP, Salt Lake, Utah, 2001,3:1709- 1712.
  • 4Vrhel M, Saber E, Trussell HJ. Color Image Generation and Display Technologies: An Overview of Methods, Devices, and Research[J]. IEEE Signal Processing Mag., 2005, 22(1):23-33.
  • 5Brislawn C M. Classification of Nonexpansive Symmetric Extension Transforms for Multirate Filter Banks[J]. Journal of Applied Computational Harmonic Analysis, 1996,3:337 - 357.
  • 6Shapiro J M. Embedded Image Geding Using Zerotree of Wavelet Coefficients[J]. IEEE Trans. Signal Processing, 1993, 41(12): 3445- 3462.
  • 7Said A, Pearlman W A. A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees[J]. IEEE Trans. Circuita Syst. Video Technol., 1996, 6(3):243-250.
  • 8Chrysafis C, Ortega A. Line-based, Reduced Memory, Wavelet Image Compression[J]. IEEE Trans. Image Processing, 2000, 9(3):378- 389.
  • 9Xie G, Shen H. Highly Sealable, Low-complexity Image Coding Using Zeroblocks of Wavelet Coefficients[J]. IEEE Trans. Circuits Syst. Video Technol., 2005, 15(6):762-770.
  • 10Xu J, Xiong Z, Li S, et al. Mereory-constrained 3-D Wavelet Transform for Video Coding without Boundary Effects[J]. IEEE Trans. Circuits Syst. Video Technol., 2002, 12(9):812- 818.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部