期刊文献+

基于微粒群算法的LS-SVM时间序列预测 被引量:1

Time Series Forecasting via Least Squares Support Vector Machine Based on Particle Swarm Optimization
下载PDF
导出
摘要 将微粒群算法引入到最小二乘支持向量机(LS-SVM)时间序列预测,建立预测模型。思路来自微粒群算法可以在超平面空间中实现优化搜索,因此,将微粒群算法中的微粒运动公式进行修正,从而实现对LS-SVM的训练。然后用训练过的LS-SVM进行预测,即得到最终结果。将此方法应用于销售量预测,结果表明,此模型有更高的预测精度,而且在不同的LS-SVM学习参数下模型的误差相对稳定。 The Particle Swarm Opimization(PSO) are introduced to the time series forecasting method based on Least Squares Support Vector Machine (LS- SVM), then the forecasting model is established. The feature that PSO can optimize the procedure of searching in hyperplane space inspires the mind. By modifying the velocity equation of particle in original PSO, the training of LS - SVM is realized. Then forecasting result is obtained by using LS - SVM which is trained by PSO. This method is applied in the sales volume prediction. The result indicates that the forecasting model has higher forecasting accuracy and steadier forecasting error at different LS- SVM parameters.
作者 林庆 白振兴
出处 《现代电子技术》 2008年第14期147-150,共4页 Modern Electronics Technique
关键词 支持向量机 微粒群算法 时间序列预测 超平面空间 support vector machine particle swarm optimization time series forecasting hyperplane space
  • 相关文献

参考文献10

  • 1Vapnik V N. An Overview of Statistical Learning Theory [J]. IEEE Transactions on Neural Networks, 1999,10(5) : 988 - 999.
  • 2Kennedy J,Eberhart R C. Particle Swarm Optimization[R]. Proc. IEEE Int. Conf. Neutral Network IV, 1995.
  • 3Al - kazemi B, Mohan C K. Multi - phase Generalization of the Particle Swarm Optimization Algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation [C]. 2002,1:489 - 494.
  • 4Suykens J A K. Least Squares Support Vector Machine. IJC- NN,2003.
  • 5De Brabanter J. LS - SVM Regression Modelling and Its Applications [D]. PhD Thesis, Faculty of Engineering, K. U. Leuven (Belgium) ,2004.
  • 6LS- SVMIabl. 5, http://www.esat. kuleuven.ac. be/sista/ lssvmlab.
  • 7Van den Bergh F. An Analysis of Particle Swarm Optimizers [D]. University of Pretoria, South Africa, 2002.
  • 8魏宏业,王建华,何崴.销售量预测的支持向量机建模及参数选择研究[J].系统仿真学报,2005,17(1):33-36. 被引量:16
  • 9飞思科技产品研发中心.小波分析理论与Matlab7[M].北京:电子工业出版社,2005.
  • 10胡国胜.支持向量机算法及应用[J].现代电子技术,2005,28(3):106-109. 被引量:21

二级参考文献14

  • 1David C, Schmittlein, Donald G Morrison, Richard Colombo. Counting your customers:who are they and what will they do next?[J].Management Science, 1987, 33(1): 1-24.
  • 2David C, Schmittlein, Robert A Peterson. Customer Base Analysis: An Customer Value[J]. Harvard Business Review, 1998, 卷(11): 53-67.
  • 3Vapnik V. The Nature of Statistical Learning Theory[M].Springer-Verlag, New York, 1995.
  • 4Nello Cristiartini, John Shawe-Taylor. An Introduction to Support Vector Machines and other Kernel-based learning methods[M]. Cambridge University Press, 2000.
  • 5Steve R Gunn. Support Vector Machines for Classification and Regression Technical Report[R], University of Sounthampton, 1998.
  • 6Gunn S. Support Vector Machines Classification and Regression[R].ISIS Technical Report. Image Speech & Intelligent Systems Group,University of Southampton, 1998.
  • 7Smola Alex J, Scholkopf B. A Tutorial on Support Vector Regression[R].NeuroCOLT2 Technical Report Series NC-TR-98-030, Royal Holloway College, University of London, UK, 1998.
  • 8李自光,杜荣华,颜荣庆.基于神经网络的机电产品预测分析系统的研究与开发[J].长沙交通学院学报,2000,16(2):30-34. 被引量:1
  • 9范宏,王直杰,汤兵勇.基于遗传算法的神经网络销售量预测模型[J].系统工程理论方法应用,1998,7(3):17-21. 被引量:3
  • 10乔忠,陈新辉,刘石球.关于企业产品销售量的模糊预测[J].中国管理科学,2001,9(6):31-35. 被引量:10

共引文献35

同被引文献17

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部