期刊文献+

一种基于邻域噪声评价法的图像去噪算法 被引量:4

An Image Denoising Algorithm Based on Neighborhood Noise Evaluation
下载PDF
导出
摘要 常用的经典脉冲噪声滤波方法在去除图像脉冲噪声的过程中,常常造成图像细节信息的丢失,导致图像模糊不清.为了克服这一缺陷,提出了一种新的基于局部相似度分析和邻域噪声评价的图像去噪算法.该算法通过分析图像中各像素点的局部相似度来确定图像的轮廓和噪声,再通过邻域脉冲噪声评价法检测出脉冲噪声点,使图像处理仅处理噪声点而保持轮廓像素点不变,更有效地改善了噪声检测精度,并保护了图像的细节特征.实验结果表明,这种新算法较其他经典滤波器具有更有效的图像去噪和细节信息保护性能,具有一定的应用价值. The loss of information on image details was often found in image denoising process if using the conventionally typical method of impulse noise filtering, which resulted in blurred images. Based on local similarity analysis and neighborhood noise evaluation, a new image denoising algorithm is proposed to analyze the local similarities between all pixels in an image so as to determine the outline and noise of an image. Then, the noises are detected through neighborhood impulse noise evaluation so as to enable the algorithm to just process noise pixels with the pixels of image outlines kept unchanged. In this way, the accuracy of noise detection can be improved more efficiently with image details well preserved. Experimental results showed that the new algorithm outperforms other prior-art methods in suppressing impulse noise and detail preservation, thus offering a new filter applicable to image processing.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期1033-1036,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50574019)
关键词 图像处理 脉冲噪声 图像去噪 局部相似度分析 邻域评价 image processing impulse noise image denoising local similarity analysis neighborhood noise evaluation
  • 相关文献

参考文献12

  • 1Gallegos-Funes F J, Ponomaryov V I. Real-time image filtering scheme based on robust estinmtors in presence of impulsive noise[J]. Real-Time lmaging, 2004, 10 ( 2 ) : 69 - 80.
  • 2Acharya T, Ray A K. Image processing: principles and applications [M]. Hoboken: John Wiley & Sons, Inc,2005:105 - 130.
  • 3Lukac R, Smolka B, Martin K, et al. Vector filtering for color inmging[J]. IEEE Signal Processing Magazine, 2005, 22(1) :74 - 86.
  • 4Tang K, Astola J, Neuvo Y. Nonlinear multivariate image filtering techniques [ J ]. IEEE Transactions on lTnage Processing, 1995,4(6) :788 - 798.
  • 5Lukac R. Adaptive vector median filtering [ J ]. Pattern Recognition Letters, 2003,24(12) : 1889 - 1899.
  • 6Lucat L, Siohan P, Barba D. Adaptive and global optimization methods for weighted vector median filters [J]. Signal Processing : Image Communication, 2002, 17 ( 7 ) : 509 - 524.
  • 7Lukac R, Smolka B, Plataniotis K N, et al. Selection weighted vector directional filter [J]. Computers and Visual Image Understanding, 2004,94 ( 1/2/3) :140 - 167.
  • 8Yuan S Q, Tan Y H. Impulse noise removal by a global-local noise detector and adaptive median filter [ J ]. Signal Processing, 2006,86(8) : 2123 - 2128.
  • 9Ma Z H, Feng D G, Wu H R. A neighborhood evaluated adaptive vector filter for suppression of impulse noise in color images[J]. Real-Time Imaging, 2005, 11 (5/6) : 403 - 416.
  • 10Smolka B, Chydzinski A, Wojciechowski K, et al. Selfadaptive algorithm for impulsive noise reduction in color images [ J ]. Pattern Recognition, 2002, 35 (8) : 1771 - 1784.

同被引文献38

  • 1李淑霞,王汝霖,李春梅,许亮,李国新.基于噪声方差估计的小波阈值图像去噪新方法[J].计算机应用研究,2007,24(1):220-221. 被引量:17
  • 2刘西成,冯燕.一种基于脉冲噪声检测的图像去噪方法[J].计算机仿真,2007,24(2):187-190. 被引量:10
  • 3孙于顺.图像噪声评价方法图像噪声评价装置[P].北京东方网力科技有限公司,中华人民共和国国家知识产权局,CN101599170A,2009.
  • 4SHEN H F, ZHANG L P. A map-based algorithm for destriping and inpainting of remotely sensed images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47 (5).
  • 5WOLF S, PINSON M H. Spatial-temporal distortion metrics for in- service quality monitoring of any digital video system[ C]//Proceed- ings of the International Society for Optical Engineering. Boston: SPIE, 1999, 3845: 266-277.
  • 6LEE C, CHO S, CHOE J, et al. Objective video quality assessment [ J]. Optical Engineering, 2006, 45(1) : 1 - 11.
  • 7WANG Z, SHEIKH H R, BOVIK A C. The handbook of video da- tabases: Design and applications [M]. Boca Raton, USA: CRC Press, 2003:1041 - 1078.
  • 8SESHADRINATHAN K, BOVIK A C. Statistical video models and their application to quality assessment [ C ]// Second International Workshop on Video Processing and Quality Metrics for Consumer E- lectronics. Austin, TX, USA: National Science Foundation, 2008, 1:23-26.
  • 9黄文辉,陆传赉.数字视频质量客观测试方法的改进和远端测试的实现[D].北京:北京邮电大学,2005.
  • 10WEBSTER A A, JONES C T, PINSON M H, et al. An objective video quality assessment system based on human perception[ C]// SPIE Human Vision, Visual Processing and Digital Display IV. Bos- ton: SPIE, 1993:15-26.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部