期刊文献+

混合量子算法及其在flow shop问题中的应用 被引量:3

Hybrid quantum algorithm and its application in flow shop problem
下载PDF
导出
摘要 量子进化算法(QEA)是目前较为独特的优化算法,它的理论基础是量子计算。算法充分借鉴了量子比特的干涉性、并行性,使得QEA求解组合优化问题具备了可行性。由于在求解排序问题中,算法本身存在收敛慢,没有利用其它未成熟个体等缺陷,将微粒群算法(PSO)及进化计算思想融入QEA中,构成了混合量子算法(HQA)。采用flowshop经典问题对算法进行了测试,结果证明混合算法克服了QEA的缺陷,对于求解排序问题具有一定的普适性。 Quantum Evolutionary Algorithm (QEA) is a distinctive type of algorithm for optimization currently,and the theoretical basis of QEA is quantum computation.The algorithm takes advantage of intervention and parallelism of quantum bit thoroughly, which enables QEA to solve combinatorial optimization problems.While solving scheduling problems,QEA has defects that it converges slowly and doesn't use other immature individual.Hybrid Quantum Algorithm (HQA) is formed and it sucks Particle Swarm Optimization algorithm (PSO) and evolutionary computation into QEA.Classical flow shop problem is employed to test the algorithm,and the result shows that the hybrid algorithm overcomes the defects of QEA and it has universality to solve scheduling problems.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第20期48-50,95,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.70672110) 上海市重点学科资助项目(No.T0502)
关键词 量子进化算法 量子比特 微粒群算法 混合量子算法 Quantum Evolutionary Algorithm (QEA) quantum bit Particle Swatch Optimization algorithm (PSO) Hybrid Quantum Algorithm(HQA)
  • 相关文献

参考文献4

  • 1陆晓亮 胡苏太.量子计算机的发展现状和趋势.高性能计算发展与应用,2006,(1):7-11.
  • 2Kuk-Hyun Han,Jong-Hwan Kim.Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 IEEE Congress on Evolutionary Computation, 2000: 1354-1360.
  • 3麦克维克斯.现代启发式方法[M].曹宏庆,译.北京:中国水利水电出版社,2003:147-149.
  • 4杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32

二级参考文献9

  • 1[1]Holland J H.Genetic algorithms and classifier systems:foundations and their applications [A].Proceedings of the Second Intemational Conference on Genetic Algorithms[C].1987:82-89.
  • 2[2]Rechenberg I.Evolutionsstrategie:Optimieung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973.
  • 3[3]Klockgether J,Schwefel H P.Two-phase nozzle and hollow core jet experiments [A].In Elliott D.(eds.) Proc.11th Symp.Engineering Aspects of Magneto hydrodynamics [C].California Institute of Technology,Pasadena CA,March,1970,24-26:141-148.
  • 4[4]Fogel L J,Owens A J,Walsh M J.Artificial Intelligence Through Simulated Evolution [M].John Wiley,Chichester,UK,1966.
  • 5[5]Rechenberg I.Evolutionsstrategie:Optimierung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973.
  • 6[6]Schwefel H P.Evolution and Optimum Seeking.Sixth Generation Computer Technology Series [M].Wiley,New York,1995.
  • 7[7]Back T,Hoffmeister F,Schwefel H P.A Survey of Evolution Strategies[A].In Belew R.and Booker L.(eds.) Proceedings of the Forth International Conference on Genetic Algorithms [C],Morgan Kaufmann Publishers,San Mateo,CA,1991:2-9.
  • 8[9]陈国良,王熙法,庄镇泉,王东生.遗传算法及其应用[M].人民邮电出版社,1997.
  • 9王安民.计算的量子飞跃[J].物理,2000,29(6):351-357. 被引量:5

共引文献32

同被引文献59

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部