期刊文献+

基于粒子群算法的投影寻踪分类模型研究 被引量:9

Research on projection pursuit classification model based on particle swarm optimization algorithm
下载PDF
导出
摘要 投影寻踪分类模型将高维分析问题的数据投影到最佳投影方向上,将其转化为一维问题进行分析研究,其实质是一种降维处理技术,以达到在低维空间分析高维非线性数据的目的.寻找最佳投影方向是一个优化搜索过程,PSO算法可以有效地应用于投影寻踪分类模型中最佳投影方向的搜索.用最佳投影方向计算样本数据的最佳投影值,根据K-均值聚类算法对投影值进行聚类,获取聚类结果. Projection Pursuit Classification Model is performed by high dimensional analysis of the data in the best projection direction, it can be translated into one-dimensional analysis of the issue, its essence is a dimensionality reduction technology in order to meet the purpose of analyzing high-dimensional and non-linear data in the low-dimensional space. The best projection direction is found to be a projection optimization search process. PSO algorithm can be effectively applied to projection pursuit classification model in order to find the best projection direction. With the best projection direction computation the cluster according to the K-means clustering algorithm to the projection value is carried out, and clustering results are obtained.
出处 《长沙交通学院学报》 2008年第2期90-95,共6页 Journal of Changsha Communications University
基金 湖南省自然科学基金资助项目(06jj50109)
关键词 粒子群算法 投影寻踪分类模型 窗口密度 维数祸根 particle swarm optimization algorithm projection pursuit classification model window density dimension cause of disaster
  • 相关文献

参考文献8

二级参考文献44

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3高鹰,谢胜利,许若宁,李朝晖.基于聚类的多子群粒子群优化算法[J].计算机应用研究,2006,23(4):40-41. 被引量:11
  • 4Chen-Yi Chen,Fun Ye.Particle swarm optimization algorithm and its application to clustering analysis[C].Taipei,Taiwan:Proceedings of the IEEE International Conference on Networking,Sensing and Control,2004.789-794.
  • 5Gao Xinbo,Ji Hongbing,Xie Weixin.A novel FCM clustering algorithm for interval-valued data and fuzzy-valued data[C].Proceedings of ICSP,2000.1551-1555.
  • 6Elbeltagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics,2005,19(1):43-53.
  • 7Yu Jian,Huang H K,Tian S F.An efficient optimality test for the fuzzy C-means algorithms[C].IEEE World Congress on Computational Intelligence,2000.86-91.
  • 8Paterlini S,Krink T.High performance clustering with differential evolution[C].Proceedings of the IEEE Congress on Evolutionary Computation,2004.2004-2011.
  • 9Kennedy J,Eberhart R.Particle Swarm Optimization[C]//Proc IEEE Int Conf on Neural Networks,Perth,1995:1942-1948.
  • 10Eberhart R C,Shi Yu-hui.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proc IEEE Int Conf on Evolutionary Computation,La Jolla,2000:84-88.

共引文献208

同被引文献100

引证文献9

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部