期刊文献+

基于导数误差的移动网格方法(英文)

Moving Mesh Method for Minimizing Derivative Error
下载PDF
导出
摘要 该文首先在理论上利用线性插值构造基于导数误差的最优插值网格,然后通过后验误差估计设计了基于导数的有限元移动网格迭代算法来求解微分方程.数值实验说明了该文提出的算法是有效的. Construction of optimal meshes for controlling the errors in derivative estimation for piecewise linear interpolation of data function is discussed. By the optimal mesh, the grids are iteratively adapted to better approximation the solution. Numerical experiments show that a finite element scheme based on this properly adapted mesh works in a efficient manner.
作者 杨银 黄云清
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2008年第2期1-6,共6页 Natural Science Journal of Xiangtan University
基金 国家973项目资助(2005CB321701)
关键词 导数误差 移动网格 有限元 自适应 derivative error moving mesh optimal mesh adaptive
  • 相关文献

参考文献11

  • 1AZEVEDO E F D. Optimal triagular mesh generation by coordinate transformation [J]. SIAM J SCI Stat Comput , 1991, 13 (4), 755-786.
  • 2CHEN Y. Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution [J].Journal of Computational and Applied Mathematics, Z003, 159:25-34.
  • 3CHEN Y. Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid [J]. Advances in Computational Mathematics, 2006, 24:197-212.
  • 4HUANG W Z, REN Y. Russell, Moving mesh partial differential equations (MMPDES) based on the equidistribution principle[J].SIAM J Numer Anal, 1994, 31:709-730.
  • 5NATALIA Kopteva. Maximum Norm A Posterior/Error Estimates for a one-dimensional convection-diffusion problem[J].SIAM J Numer Anal, 2001, 39(2):423-441.
  • 6NATALIA Kopteva, MARTIN Stynes. A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem.[J]. SIAM J Numer Anal, 2001, 39(4):1 446-1 467.
  • 7MILLER K , N MILLER R. Moving finite element Ⅰ[J]. SIAM J Numer Anal, 1981,(6):1 019-1 032.
  • 8QIU Y , SLOAN D M , TANG T. Numerical solution of a singularly perturbed two-point boundary value problem using equidis- tribution Ⅰ analysis of convergence[J]. J Comput Appl Math, 2000, 1161 121 - 143.
  • 9LINSS T. Uniforming pointwise convergence of finite different schemes using grid requidistribution [J]. SIAM J Numer Anal, 2001, 39:423-441.
  • 10TANG H Z, TANG T, ZHANG P W. An adaptive mesh redistribution methods for non-linear Hamilton-Jaeobi equations in two-and three-dimensions[J]. J Comput Phys, 2003, 188: 543-572.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部