期刊文献+

一类导数超收敛校正公式的数学证明

Mathematical Proof for a Class of Derivative Superconvergence Correction Formula
下载PDF
导出
摘要 对两点边值问题,袁利用单元能量法提出了一类超收敛导数校正公式,该文给出了数学证明,理论分析和袁的计算结果一致. For two-point boundary value problem, Yuan proposed a class of derivative superconvergence correction formula by Element Energy Projection method,we gave a strict mathematical proof. The theoretical analysis interpreted yuan's numerical results.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2008年第2期7-9,共3页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金资助课题(10671065)
关键词 超收敛 校正公式 有限元 单元能量法 Superconvergence Correction formula Finite element Element Energy Projection method
  • 相关文献

参考文献6

  • 1ZIENKIEWICZ O C J Z. The superconvergence patch recovery and a posteriori estimate. Part 1 : The recovery technique[J]. Int J Numer Methods Engrg,1992,33:1 331-1 364.
  • 2ZIENKIEWCZ O C J Z. The superconvergence patch recovery and a posteriori estimate [J]. Part 2:Error estimates and adaptivity, Int J Numer Methods Engrg, 1992,33 : 1 365 - 1 382.
  • 3张铁.导数小片插值恢复技术与超收敛性[J].计算数学,2001,23(1):1-8. 被引量:13
  • 4ZHU Q D , ZHAO Q H. SPR technique and finite element correction[J]. Numer Math, 2003, 96:185-196.
  • 5袁驷,王枚.一维有限元后处理超收敛解答计算的EEP法[J].工程力学,2004,21(2):1-9. 被引量:59
  • 6DOUGLAS J,DUPONT T. Galerkin approximations for the two point boundary problems using continuous piecewise polynomial space[J]. Numer Math,1974,22:99-109.

二级参考文献9

  • 1Strang G and Fix G. An analysis of the finite element method [M]. Prentice-Hall, 1973.
  • 2Douglas J, Dupont T. Galerkin approximations for the two point boundary problems using continuous, piecewise polynomial spaces [J]. Numer. Math., 1974, (22): 99-109.
  • 3Zhu J Z, Zienkiewicz O C. Superconvergence recovery technique and a posteriori error estimator [J]. International Journal for Numerical Methods in Engineering, 1990, 30: 1321-1339.
  • 4Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimator, part I: the superconvergence patch recovery [J]. International Journal for Numerical Methods in Engineering, 1992, 33: 1331-1364.
  • 5Tong P. Exact solution of certain problems by finite-element method [J]. AIAA Journal, 1969, (7): 178-180.
  • 6Yuan Si. From matrix displacement method to FEM: loss and recovery of stress accuracy [A]. Proceedings of First International Conference on Structural Engineering [C]. ed. Y. Long, 1999, Kunming, China, 134-141.
  • 7袁驷 王枚.有限元(线)法超收敛应力计算的新方案及其若干数值结果[C].袁明武主编.中国计算力学大会论文集[C].广州, 中国,2001,12月..
  • 8袁驷.从矩阵位移法看有限元应力精度的损失与恢复[J].力学与实践,1998,20(4):1-6. 被引量:23
  • 9张铁,张丽琴.一维问题有限元的超收敛性质[J].东北大学学报(自然科学版),1999,20(2):206-209. 被引量:4

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部