期刊文献+

多孔WC-TiC催化剂的戊烷异构化活性

Catalytic activity of porous WC-TiC for pentane isomerization
下载PDF
导出
摘要 以TiC和MoSi2为基体,WO3和仲钨酸铵为WC的前驱体,碳酸氢铵为造孔剂,采用固相合成技术,1560℃制备碳化钛基复合WC催化材料。分别通过X射线衍射仪、扫描电镜、压汞仪、气相色谱和气质谱表征催化材料的相组成、显微结构、孔径分布和对戊烷的催化性能。结果表明,碳化钛基复合WC材料的相组成为TiC、SiC、MoC、WC和(Ti,Si)C;当WO3为WC前驱体时,催化材料的孔径呈现单峰分布[(0.3~50μm)],350℃其对戊烷的转化率为16.21%,异构化选择性为5.68%;当仲钨酸铵为WC前驱体时,催化材料的孔径呈现双峰分布[(100~800)nm和(1.5)μm]。WC颗粒在500nm以下,350℃戊烷转化率达到48.44%,异戊烷的选择性为12.91%。 Porous titanium carbide matrix catalysts were prepared by solid state reaction among TiC, MoSi2 and WO3 or 5(NH4)2O · 12WO3 · 5H2O at 1 560 ℃, using NH4HCO3 as the pore generating agent. The phase composition, microstructure, pore size distribution and the catalytic properties of the carbide catalysts were characterized by XRD, SEM, mercury intrusion porousimetry( MIP), gas chromatography(GC) and GC/MS. The results indicated that there existed TiC, SiC, MoC, WC and (Ti, Si) C phase in the porous carbide catalyst. Catalyst containing WO3, with larger pores [ (0.3 - 5.0) μm in radius ] and wide pore size distribution, attained pentane conversion of 16.21% and selectivity to isopentane of 5.68% at 350 %; When using ammonium paratungstate as the precursor for tungsten carbide, bimodal peaks [ ( 100 - 800) nm, ( 1 - 5 ) μm ] were observed, with relatively narrow pore size distribution and WC radius of less than 500 nm. The WC particles had excellent catalytic properties for pentane isomerization, with pentane conversion of 48.44% and selectivity to isopentane of 12.91% at 350 ℃.
出处 《工业催化》 CAS 2008年第7期26-29,共4页 Industrial Catalysis
关键词 催化化学 复合碳化物催化剂 孔径分布 戊烷异构化 异戊烷 catalytic chemistry composite carbide catalyst pore size distribution pentane isomerization isopentane
  • 相关文献

参考文献13

  • 1Krakhmalev P V, Adeva R T, Bergstrom J. Influence of microstructure on the abrasive edge wear of WC-Co hardmetals[J]. Wear, 2007, 263:240 -245.
  • 2Zhang S C,Hilmas G E, Fahrenholtz W G. Zirconium carbidetungsten cermets prepared by in situ reaction sintering[ J]. Journal of the American Ceramic Society, 2007,90:1930-1933.
  • 3Cutler. Dense, fine-grained tungsten carbide ceramics and a method for making the same:US,4828584[ P]. 1989.
  • 4Barnett C J,Burstein G T,Kucernak A R J,et al. Electrocatalytic activity of some carburized nickel, tungsten and molybdenum compounds [J]. Electrochimica Acta, 1997,42:2381 - 2388.
  • 5Oyama S T. Chemistry of transition metal carbides and nitrides [ M]. Glasgow:Blackie Academic and Professional,1996.
  • 6Neylon M K,Choi S, Kwon H,et al. Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization [ J ]. Applied Catalysis A : General, 1999,183:253 - 263.
  • 7Da Costa P, Lemberton J L, Potvin C, et al. Tetralin hydrogenation catalyzed by Mo2C/Al2O3 and WC/Al2O3 in the presence of H2 S [ J ]. Catalysis Today,2001,65 : 195 - 200.
  • 8Szymanska K A,Lewandowski M,Sayag C. Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene[ J ]. Catalysis Today, 2007, 19:7 - 12.
  • 9Garin F, Keller V, Ducros R, et al. Catalytic activity of bulk tungsten carbides for alkane reforming[ J ]. Journal of Catalysis, 1997,166 : 136 - 147.
  • 10Levy R B,Boudart M. Hatinum-like behavior of tungsten carbide in surface catalysis [ J ]. Science,1973,181:547 - 549.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部