摘要
提出了基于位对象的最大频繁模式挖掘算法.算法中,用位对象表示数据,并用位对象概念改进FP-Tree.用深度优先搜索策略,通过压缩数据库,并用位对象的特性简化模式支持度的计数,使挖掘时不需产生条件FP-Tree和候选项目集,以提高最大频繁模式的挖掘效率.实验结果验证了BFP-Miner的有效性.
A new algorithm based on bit objects, BFP-Miner, for mining maximal frequent patterns was proposed. It uses the bit objects to express data and to improve the FP-Tree (frequent pattern tree). The algorithm uses depth-first search strategy, and simplifies the support counting of frequent patterns with the characteristics of the bit objects and by compression of the database. Neither a conditional FP-Tree nor candidate patterns are generated during mining the maximal frequent patterns, so that the mining efficiency is increased. Experimental result verifies the efficiency of the BFP-Miner.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2008年第4期488-493,共6页
Journal of Southwest Jiaotong University
基金
陕西省自然科学基金资助项目(2005F13)
陕西省教育厅专项科研基金资助项目(06JK248)
关键词
数据挖掘
关联规则
最大频繁模式
位对象
data mining
association rule
maximal frequent pattern
bit object