期刊文献+

基于位对象的最大频繁模式挖掘算法

Algorithm Based on Bit Objects for Mining Maximal Frequent Patterns
下载PDF
导出
摘要 提出了基于位对象的最大频繁模式挖掘算法.算法中,用位对象表示数据,并用位对象概念改进FP-Tree.用深度优先搜索策略,通过压缩数据库,并用位对象的特性简化模式支持度的计数,使挖掘时不需产生条件FP-Tree和候选项目集,以提高最大频繁模式的挖掘效率.实验结果验证了BFP-Miner的有效性. A new algorithm based on bit objects, BFP-Miner, for mining maximal frequent patterns was proposed. It uses the bit objects to express data and to improve the FP-Tree (frequent pattern tree). The algorithm uses depth-first search strategy, and simplifies the support counting of frequent patterns with the characteristics of the bit objects and by compression of the database. Neither a conditional FP-Tree nor candidate patterns are generated during mining the maximal frequent patterns, so that the mining efficiency is increased. Experimental result verifies the efficiency of the BFP-Miner.
出处 《西南交通大学学报》 EI CSCD 北大核心 2008年第4期488-493,共6页 Journal of Southwest Jiaotong University
基金 陕西省自然科学基金资助项目(2005F13) 陕西省教育厅专项科研基金资助项目(06JK248)
关键词 数据挖掘 关联规则 最大频繁模式 位对象 data mining association rule maximal frequent pattern bit object
  • 相关文献

参考文献8

  • 1BAYARDO R. Efficiently mining long patterns from databases[C]//Proc, of 1998 ACM-SIGMOD Int. Conf. on Management of Data. New York: ACM Press, 1998: 85-93.
  • 2AGARWAL R, AGGARWAL C, PRASAD V. Depth first generation of long patterns[ C] //Proc, of 6th ACM-SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000: 108-118.
  • 3宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 4BURDICK D, CALIMLIM M, GEHRKE J. Mafia: a maximal frequent itemset algorithm for transactional databases [ C ]// Proc. of the 17th Int. Conf. on Data Engineering. Heidelberg: IEEE Press, 2001 : 443-452.
  • 5颜跃进,李舟军,陈火旺.一种挖掘最大频繁项集的深度优先算法[J].计算机研究与发展,2005,42(3):462-467. 被引量:20
  • 6陈鹏,吕卫锋.一种基于有效修剪的最大频繁项集挖掘算法[J].北京航空航天大学学报,2006,32(2):218-223. 被引量:2
  • 7HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[ C ]//Proc, of 2000 ACM-SIGMOD Int. Conf. on Management of Data. Dallas. ACM Press, 2000: 1-12.
  • 8RYMON R. Search through systematic set enumeration, MS-CIS-92-66 [ R]. Philadelphia: University of Pennsylvania Department of Computer and Information Science, 1992.

二级参考文献28

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. The 1993 ACM SIGMOD Int'l Conf. on Management of Data, Washington, D.C. USA,1993.
  • 3R. Agrawal, R. Srikant. Fast algorithms for mining association rules in large databases. The 20th Int'l Conf. on Very Large Databases, Santiago, Chile, 1994.
  • 4R. Agarwal, C. Aggarwal, V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 2001, 61(3): 350--371.
  • 5J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation. The 2000 ACM SIGMOD Int'l Conf. on Management of Data, Dallas, USA, 2000.
  • 6H. Mannila, H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1997, 1(3): 241--258.
  • 7Lin DaoI, Kedem, Z. M. Pincer-Search: A new approach for discovering the maximum frequent set. The 6th European Conf. on Extending Database Technology, Valencia, Spain. 1998.
  • 8R. J. Bayardo. Efficiently mining long patterns from databases.The 1998 ACM SIGMOD Int'l Conf. on Management of Data,Seattle, Washington, USA, 1998.
  • 9Ramesh C. Agarwal, Charu C. Aggarwal, V. V. V. Prasad.Depth-first generation of long patterns. The 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, Boston,MA, USA, 2000.
  • 10Doug Burdick, Manuel Calimlim, Johannes Gehrke. Mafia; A maximal frequent itemset algorithm for transactional databases. The17th Int'l Conf. on Data Engineering, Heidelberg, Germany,2001.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部