期刊文献+

三角函数的一些扩展公式

Expansion Formulas of Trigonometric Functions
下载PDF
导出
摘要 通过使用生成函数的方法,给出了Bernoulli多项式、Euler多项式、第二类加权的Stirling数以及整数幂求和的一些新的闭形式,从而得到了三角函数的一些递归关系和扩展公式。 The purpose of this paper is to give some recurrence relations and S expansion formulas of trigonometric functions in terms of Bernoulli polynomial, Euler polynomial, the weighted Stirling numbers, and sum of integer powers.
出处 《承德石油高等专科学校学报》 CAS 2008年第2期67-70,共4页 Journal of Chengde Petroleum College
关键词 BERNOULLI多项式 EULER多项式 第二类加权的Stirling数 三角函数 Bernoulli polynomial Euler polynomial the weighted Stirling numbers
  • 相关文献

参考文献8

  • 1A. Erdelyi. W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendedtal Functions, vol. Ⅰ, McGraw- Hill Book Company, New York, Toronto and London, 1953.
  • 2H.M. Srivastava, J. choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
  • 3L. Comtet, Advanced Combinatories, Reidel, Dordrecht, 1974.
  • 4L. Carlitz, Weighted stirling numbers of the first and second kinds Ⅰ, Fibonacci Quart. 18(1980) : 147-162.
  • 5L. Carlitz, Weighted stirling numbers of the first and second kinds Ⅱ, Fibonacci Quart. 18(1980) : 242-257.
  • 6Ayhan Dil, Veli Kurt and Mehmet Genkci, Algorithms for Bernoulli and Allied Polynomials, Journal of Integer Sequences, Vol. 10 (2007) , Article 07.5.4.
  • 7Djurdje Cvijovic, H.M. Sricastava, Summation of a family of finite secant sums, Applied Mathematics and Computation, 190 (2007): 590-598.
  • 8S. L. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math, (2007) , doi:10. 1016/j. disc. 2007. 03. 030.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部