期刊文献+

平面3N体问题的中心构型 被引量:4

The Central Configurations of Planar 3N-body Problems
下载PDF
导出
摘要 对于N体问题,中心构型具有非常重要的作用。1772年,拉格朗日描述了3体问题的一个周期解既各质点位于等边三角形的顶点处以适当的角速度围绕质心旋转。L.M.Perko和E.L.W alter证明了当N≥4时,N个质点位于正N边形的顶点处以适当的角速度围绕质心旋转是N体问题的一个周期解的充要条件为各质点的质量相等。本文主要研究了平面3N体问题存在正多边形套中心构型的充分和必要条件。 For N- body problems, a central configuration plays an important role. In 1772, Lagrange described a periodic solution of the three - body problem, that is to say, three masses at the vertices of an equilateral triangle rotate about their common center of mass with an appropriate angular velocity. Then, L. M. Perko and E. L. Walter proved that when N≥4, N masses at the vertices of a regular polygon rotating about their common center of mass with an appropriate angular ,-elocity is the sufficient and necessary condition for a periodic solution of the N - body problem if and only if the masses are equal. This paper mainly concentrates on the necessary and suffi- cient conditions for the nested - polygonal central configuration of planar 3N - body problems.
作者 陈剑
出处 《绵阳师范学院学报》 2008年第5期8-12,共5页 Journal of Mianyang Teachers' College
关键词 中心构型 循环矩阵 3N体问题 central configuration circular matrix 3N - body problems
  • 相关文献

参考文献10

二级参考文献47

  • 1ZHANG WeinianDepartment of Mathematics, Sichuan University, Chengdu 610064, China.On nulls of perturbed Fredholm operators and degenerate homoclinic bifurcations[J].Science China Mathematics,2004,47(4):617-627. 被引量:1
  • 2刘文中,张同杰,徐玢.平面kN体问题正多边形解的简明数值方法[J].北京师范大学学报(自然科学版),2005,41(4):386-388. 被引量:2
  • 3Abraham R, Marsden J. Foundations of Mechanics [ M ]. 2nd ed. London : Benjamin/Cummings, 1978.
  • 4Meyer K, Hall G. Introductions to Hamilitonian Systems and n- body problems [ M]. Berlin: Springer, 1992.
  • 5Moeckel R. On central configurations [J]. Math, 1990, 205:499 -517.
  • 6Moeckel R. Simo C. Bifurcation of spatial central configurations from planar ones[ J ]. SIAM J Math Anal, 1995,26 : 978-998.
  • 7Wintner A. Analytical Foundations of Celestial Mechanics [ M ]. Princeton : Princeton University Press, 1941.
  • 8Sieglec,Moser J. Lectures on Celestial Mechanics [ M]. Berlin: Springer, 1971.
  • 9LongY SunS ZhangS.Central configurations and linear systems .南开大学学报:自然科学版,2002,35:26-26.
  • 10Easton R. Some topology of n- body problems[ J]. J Differential Equations, 1975, 19: 258- 269.

共引文献4

同被引文献62

  • 1刘文中,孙艳春,尹志强,刘梦.N体问题的正多面体解[J].北京师范大学学报(自然科学版),2006,42(3):265-267. 被引量:3
  • 2苏霞,温书.四体问题的平行四边形中心构型[J].淮阴工学院学报,2006,15(5):15-19. 被引量:3
  • 3汤建良.关于4-体问题中心构型的一点研究[J].系统科学与数学,2006,26(6):647-650. 被引量:2
  • 4刘文中,徐玢,王欢,张同杰.N体问题的“蜂窝型”中心构型[J].北京师范大学学报(自然科学版),2006,42(6):576-578. 被引量:3
  • 5Abraham R,Marsden J.Foundations of Mechanics[M].London:Benjamin / Cummings,1978.
  • 6L M Perko,E Lwalter.Regular polygon solutions of N-body problem[J].Proc AMS,1985,94:301-309.
  • 7Moeckel R.On central configurations[J].Math,1990,205:499-517.
  • 8Meyer K,Hall G.Introductions to Hamilitonian Systems and n-body problems[M].Berlin:Springer,1992.
  • 9S Q Zhang,Q Zhou.Periodic solutions for planar 2N-body problems[J].Proc AMS,2002,131:2161-2170.S Q Zhang,Q Zhou.Periodic solutions for planar 2N-body problems[J].Proc AMS,2002,131:2161-2170.
  • 10Ruschi M, Calogero F. Solvable and/or integrable and/ or linearizable N-body problems in ordinary (three- dimensional ) space. I [ J ]. Journal of Nonlinear Mathematical Physics, 2000, 7 (3) : 303.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部