期刊文献+

随机利率下索赔次数服从复合Poisson-Geometric过程的风险模型 被引量:1

A Risk Model with the Compound Poisson-Geometric Process for Interest Randomness
下载PDF
导出
摘要 考虑随机利率下索赔次数服从一类双参数Poisson分布时的风险模型。当随机利率为一般的独立增量过程时,得到了总索赔额折现值的各阶矩。特别地,当独立增量过程为标准Weiner过程,损失分布为Pareto分布的情形下,计算了总索赔额折现值各阶矩的表达式,并利用一阶矩给出了有利率因素时的一类NCD保费策略。在实例分析部分,分析了模型的合理性,给出了NCD策略的数值计算结果。 A risk model with the double parameters Poisson Process for interest randomness has been studied. The moments of claim size are computed under the force of interest accumulation function as a stationary and independent increment process. In particular, the moments of the claim size are computed when the interest randomness is Weiner process and the loss of distribution is Pareto distribution. Using the first moment of claim size, a type of NCD insurance fee strategy is given. As an example, the rationality of the model is analyzed and the calculation result of NCD strategy is given.
作者 束慧 熊萍萍
出处 《南京邮电大学学报(自然科学版)》 2008年第3期63-69,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
关键词 随机利率 复合POISSON-GEOMETRIC过程 索赔额 NCD保费策略 interest randomness compound Poisson-Geometric Process claim size NCD insurance fee strategy
  • 相关文献

参考文献6

二级参考文献21

  • 1毛泽春,刘锦萼.一类索赔次数的回归模型及其在风险分级中的应用[J].应用概率统计,2004,20(4):359-367. 被引量:27
  • 2高洪忠,任燕燕.二维GPSJ分布类及其在保险中的应用[J].中国管理科学,2004,12(5):30-34. 被引量:5
  • 3罗斯S M.随机过程[M].北京:中国统计出版社,1997..
  • 4McCullagh, P. and Nelder, J.A., Generalized Linear Models (Second edition), London: Chapman and Hall, 1989.
  • 5Nelder, J.A. and Pregibon, D., An extended quasi-likelihood function, Biometrika, 74(1987), 221-232.
  • 6SAS/STAT Software: Usage and Reference, Version 6, First Edition, SAS Institute Inc.
  • 7Grandell, J.C., Aspects of Risk Theory, Springer-Verlag, New York, 1991.
  • 8Ludwig Fahrmeir and Gerhard Tutz, Multivariate Statistical Modelling Based on Generalized Linear Models, SpringerVerlag, New York, Inc., 1994.
  • 9Breslow, N.E. and Clayton, D.G., Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88(1993), 9-25.
  • 10Consul, P.C. and Famoye, F., Generalized Poisson regression model,Communications in Statistics-Theory and Methods, 21(1992), 89-109.

共引文献154

同被引文献13

  • 1毛泽春,刘锦萼.一类索赔次数的回归模型及其在风险分级中的应用[J].应用概率统计,2004,20(4):359-367. 被引量:27
  • 2毛泽春,刘锦萼.索赔次数为复合Poisson-Geometric过程的风险模型及破产概率[J].应用数学学报,2005,28(3):419-428. 被引量:123
  • 3毛泽春,刘锦萼.免赔额和NCD赔付条件下保险索赔次数的分布[J].中国管理科学,2005,13(5):1-5. 被引量:24
  • 4Asmussen S, Rolski T. Computational Methods in Risk Theory: A Matrix-algorithmic Approach[J].Insurance: Mathematics and Economics, 1991,10(4).
  • 5Asmussen S, Bladt M. Phase-type Distributions and Risk Processes with State-dependent Premiums[J].Scandinavia Actuarial Journal, 1996,(1).
  • 6Asmussen S, Avram F, Usabel M. Erlangian Approximations for Finite-Horizon Ruin Probabilities[J].Astin Bulletin,2002,32(2).
  • 7Avram F, Usabel M. Finite Time Ruin Probabilities with One Laplace Inversion[J]. Insurance:Mathematics and Economics,2003,32(3).
  • 8Avram F, Usabel M. Ruin Probabilities and Deficit for the Renewal Risk Model with Phase-Type Interarrival Times[J].Astin Bulletin, 2004,34(2).
  • 9Grandell J C. Aspects of Risk Theory[M].New York: Springer-Verlag, 1991.
  • 10E.L. Lehmamn. Elements of Large-Sample Theory[M].New York: Springer-Verlag, 1997.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部