期刊文献+

一种基于遗传算法的脑MR图像去偏移场模型 被引量:2

A Brain MR Images De-bias Model Based on Genetics Algorithm
下载PDF
导出
摘要 由于磁共振图像(magnetic resonance images,MRI)常含有偏移场而影响后继图像分割,针对这种图像的分割,采用Legendre多项式基函数来拟合偏移场,可以去除偏移场对图像分割的影响。当使得恢复图像的信息熵达到最小时,则求得的偏移场最优。在求偏移场的过程中,需要求解基函数的参数,由于传统的梯度下降法易陷入局部最优,为解决此问题,提出将遗传算法引入到参数求解过程中,然而传统的遗传算法不仅时间复杂度高,且易陷入局部最优,为此需对遗传算法进行改进,使得不仅更容易得到全局最优解,且时间复杂度较低。实验证明,该改进算法可以得到精确的偏移场,并可得到准确的分割结果。 Intrascan intensity inhomogeneities are a common source of difficulty for MRI segmentation. We estimate the bias field by Legendre polynomials. The bias field could be the best when we get minimum entropy. It needs to work out parameters of the base function in the process of finding bias field, but conventional methods such as gradient-descent method often find local best. To find global best, we present genetics algorithm to find best parameters to estimate the bias field, however the result was not satisfying. Then we make some modification of genetics algorithm to make it easier to find global best. Experiments on the segmentation of brain magnetic resonance images show our modification can achieve optimal bias field and accurate segmentation results.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第7期1281-1286,共6页 Journal of Image and Graphics
基金 香港特区政府研究资助局研究项目(CUHK/4185/00E) 香港中文大学研究基金项目(2050345)
关键词 磁共振图像 偏移场 信息熵 梯度下降法 遗传算法 局部最优 全局最优 magnetic resonance image (MRI) , bias field, entropy, gradient-descent, genetics algorithm, local best,global best
  • 相关文献

参考文献20

  • 1Jungke M, Von S W, Bielke G, et al. A system for the diagnostic use of tissue characterizing parameters in NMR-tomography [ A ]. In: Proceedings of International Conference on Information Processing in Medical Imaging [ C ], Utrecht, The Netherland, 1957, 39: 471 -481.
  • 2Lufkin R B, Sharpless T, Flannigan B, et al. Dynamic-range compression in surface-coil MRI [ J ]. American Journal of Roentgenology, 1986, 147(2) :379 -382.
  • 3Axel L, Costantini J, Listerud J. Intensity correction in surface-coil MR imaging [ J ]. American Journal of Roentgenology, 1987, 148(2) :418 -420.
  • 4Lim K O, Pfferbaum A. Segmentation of MR brain images into cerebrospinal fluid spaces, white, and gray matter [ J]. Journal of Computer Assisted Tomography, 1989, 13 (4) :588 - 593.
  • 5Dawant B M, Zijdenbos A P, Marolin R A. Correction of intensity variations in MR images for computer-aided tissue classification [ J]. IEEE Transactions on Medical Imaging, 1993, 12 (4) :770-781.
  • 6Gohagan J, Spitznagel E, Murphy W, et al. Multispeetral analysis of MR images of the breast [ J ]. Radiology, 1987, 163 ( 3 ) :703 - 707.
  • 7Aylward S, Coggins J. Spatially invariant classification of tissues in MR images [ A ]. In: Proceedings of the SPIE, Third Conference on Visualization in Biomedical Computing[ C ] , Rochester, MN, USA, 1994, 2359:353 - 361.
  • 8Wells W M, Grimson W E L, Kikinis R, et al. Adaptive segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 1996, 15 (4) :429 - 441.
  • 9Guillemaud R, Brady M. Estimating the bias field of MR images [ J ]. IEEE Transactions on Medical Imaging, 1997, 16 ( 3 ) : 238 - 251.
  • 10Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance image [ J]. IEEE Transactions on Medical Imaging, 1999, 18(9): 737-752.

同被引文献18

  • 1韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 2陈允杰,张建伟,韦志辉,夏德深,王平安.同时配准-分割脑MR图像的耦合变分模型[J].计算机辅助设计与图形学学报,2007,19(2):215-220. 被引量:6
  • 3陈健,田捷,薛健,戴亚康.多速度函数水平集算法及在医学分割中的应用[J].软件学报,2007,18(4):842-849. 被引量:14
  • 4Luminita A. Vese,Tony F. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J] 2002,International Journal of Computer Vision(3):271~293
  • 5Nikos Paragios,Rachid Deriche. Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation[J] 2002,International Journal of Computer Vision(3):223~247
  • 6Vicent Caselles,Ron Kimmel,Guillermo Sapiro. Geodesic Active Contours[J] 1997,International Journal of Computer Vision(1):61~79
  • 7Michael Kass,Andrew Witkin,Demetri Terzopoulos. Snakes: Active contour models[J] 1988,International Journal of Computer Vision(4):321~331
  • 8LIKAR B, VIERGEVER M A, PERNUS F. Retrospective correction of MR intensity inhomogeneity by information min- imization [J]. IEEE Trans Med Imaging, 2001, 20(12): 1398-1410.
  • 9KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neu- ral Networks. Perth.. 1995: 1942-1948.
  • 10林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183. 被引量:48

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部