期刊文献+

AN SEIRS EPIDEMIC MODEL WITH TWO DELAYS AND PULSE VACCINATION 被引量:4

AN SEIRS EPIDEMIC MODEL WITH TWO DELAYS AND PULSE VACCINATION
原文传递
导出
摘要 Pulse vaccination is an effective and important strategy to eradicate an infectious disease. The authors investigate an SEIRS epidemic model with two delays and pulse vaccination. By using the discrete dynamical system determined by stroboscopic map, the authors obtain that the infectious population dies out if R△ 〈 1, and the infectious population is uniformly persistent if R^△ 〉 1. The results indicate that a short period of pulse vaccination or a large pulse vaccination rate is a sufficient condition to eradicate the disease.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第2期217-225,共9页 系统科学与复杂性学报(英文版)
基金 the National Natural Science Foundation of China under Grant No.10471117 the Emphasis Subject of Guizhou College of Finance & Economics.
关键词 DELAY global attractivity PERSISTENCE pulse vaccination SEIRS epidemic model. 脉冲技术 种痘 接种疫苗 医疗技术
  • 相关文献

参考文献11

  • 1Z. Agur, L. Cojocaru, G. Mazor, R. Anderson, and Y. Danon, Pulse mass measles vaccination across age cohorts, in Pro. Natl. Acad. Sci. USA, 1993, 90(4): 11698-11702.
  • 2F. N. M. Al-Showaikh and E. H. Twizell, One-dimensional measles dynamics, Appl. Math. Comput., 2005, 152(1): 169-194.
  • 3R. M. Andersonand R. M. May, Population biology of infectious diseases I, Nature, 1979, 180(5721): 361-367.
  • 4K. L. Cooke and P. van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 1996, 35(2): 240-260.
  • 5E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 1995, 33(3): 250-260.
  • 6E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic model with varying population sizes, Nonlinear Analysis, 1997, 28(12): 1909-1921.
  • 7Y. Takeuchi, W. Ma, and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Analysis, 2000, 42(6): 931-947.
  • 8X. Y. Song and L. S. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 2001, 170(2): 173-186.
  • 9M. C. Schuette, A qualitative analysis of a model for the transmission of varicella-zoster virus, Math. Biosci., 2003, 182(2): 113-126.
  • 10D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical, New York, 1993.

同被引文献10

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部