期刊文献+

PERIODIC SOLUTION AND PERSISTENCE FOR A THREE-SPECIES RATIO-DEPENDENT PREDATOR-PREY MODEL WITH TIME DELAYS IN TWO-PATCH ENVIRONMENTS 被引量:4

PERIODIC SOLUTION AND PERSISTENCE FOR A THREE-SPECIES RATIO-DEPENDENT PREDATOR-PREY MODEL WITH TIME DELAYS IN TWO-PATCH ENVIRONMENTS
原文传递
导出
摘要 The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.
作者 Desheng TIAN
机构地区 College of Sciences
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第2期226-238,共13页 系统科学与复杂性学报(英文版)
基金 The research is supported by the Scientific Research Foundation of the Doctor Department of Hubei University of Technology.
关键词 Coincidence degree periodic solution predator-prey model RATIO-DEPENDENT uniform persistence. 周期解 时间延迟 持久性 捕食-食饵模型
  • 相关文献

参考文献3

二级参考文献9

  • 1Arditi, R., Ginzburg, L.R. Coupling in predator-prey dynamics: ratio-dependence. J. Ther. Biol., 139:311-326 (1989).
  • 2Berryman, A.A. The origins and evolution of predator-prey theory. Ecology, 75:1530-1535 (1992).
  • 3Fan,M., Wang, Q., Zou,X. Dynamics of a non-autonomous ratio-dependent predator-prey system. Proceedings of the Royal Society of Edinburgh, 133A: 97-118 (2003).
  • 4Gaines, R.E., Mawhin, J.L. Coincidence degree and non-linear differential equations. Springer-Verlag,Berlin, 1977.
  • 5Ma, Z. Mathematical modeling and studying on species ecology. Education Press, Hefei, 1996 (in Chinese).
  • 6Zhang, Z,, Zeng, X. A periodic stage-structure Model. App. Math. Letters, 16:1053-1061 (2003).
  • 7Gaines R. E. , Mawhin J. L. Coincidence degree and non-linear differential equations [M]. Berlin:Springer, 1977.
  • 8Zhang Zhengqiu, Zeng Xianwu. A periodic stage-structure Model[J]. App. Math. Letters, 2003, 16:1053-1061.
  • 9冯贝叶,曾宪武.蛙卵有丝分裂模型的定性分析[J].应用数学学报,2002,25(3):460-468. 被引量:4

共引文献26

同被引文献29

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部