期刊文献+

基于ECDLP的背包公钥密码体制 被引量:1

A Knapsack Public-key Cryptosystem Based On Elliptic Curve Discrete Logarithm Problem
原文传递
导出
摘要 基于背包问题的密码体制是NP完全问题[1],有较快的加/解密速度和能满足广泛应用的密码系统。背包系统问题仍然保持较热的研究方向这是毫无疑问的。给定点对(P,[m]P),求整数m,是一个非常困难的问题,这问题称为椭圆曲线离散对数问题(简称为ECDLP)。论文提出基于椭圆曲线离散对数问题的一种新颖的背包类型公钥密码体制。 There is no problem that the knapsack systems should be continuous studied, and NP-completeness nature, the faster speed ofencryption, this knapsack-based crypto system can still meet the wide requirement of applications. It is very difficult to find an integer m such that[m]p = Q, and this question is called the elliptic discrete separate logarithm question(simple form is ECDLP). This paper presents a new knapsack-type public key cryptosystem based on a novel application of the elliptic curve logarithm problem.
出处 《信息安全与通信保密》 2008年第7期83-85,共3页 Information Security and Communications Privacy
基金 贵州省省长基金(项目编号:2005-368) 贵州大学校内项目(项目编号:2006-504)
关键词 背包密码 NP完全问题 公钥密码体制 ECDLP knapsack system NP-completeness public key cryptosystem ECDLP
  • 相关文献

参考文献10

  • 1[1]Michael R,David S.Computers and Intractability:A Guide to the Theory of NP-Completeness[J].W.H.Freeman & Co.,San Francisco,1979.
  • 2[2]Merkl R C,Hellman M E.Hiding information and signatures in trapdoor knapsacks[J].IEEE Trans.on lnfo.Theory,1978,IT-24 (5) 525-530.
  • 3[3]Shamir A.A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem[C].Symp.Found.Computer Sci,1983 (23) 145-152.
  • 4[4]IEEE,P1363:Standard Specifications for Public Key Cryptography[DB/OL].http://www.manta.ieee.org/groups/1363/P1363/index.html.
  • 5[5]Miller V S.Use of elliptic curves in cryptography,advances in cryptology[C].In Proc.Crypto85,Springer LNCS,1986:17-426.
  • 6[6]Koblitz N.Elliptic curves cryptosystems[J].Mathematics of Computation,1987,(48) 203-209.
  • 7[7]Menezes A.Elliptic Curve Public Key Cryptosystems[M].Boston:Kluwer Academic Publishers,1993.
  • 8[8]Shamir A,Zippel R E.On the security of the Merkie-Hellman cryptographicscheme[J].IEEE Trans.on lnfo.Theory,1980,IT-26 (3) 339-40.
  • 9[9]Laih C S,Gau M J.Cryptanalysis of a Diophantine equation oriented pubUc key cryptosystem[J].IEEE Trans.on Commun,1997,46 (4) 511-512.
  • 10[10]Seroussi G.Elliptic curves cryptography[C].ITW 1999,Metsovo,Greece,June 27,1999:41.

同被引文献5

  • 1Merkl R C, Hellman M E. Hiding information and signatures in trapdoor knapsacks [ J ]. IEEE Trans. on lnfo. Theory, 1978,24 (5) :525 -530.
  • 2Shamir A. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem[ C ]. Syrup. Found. Computer Sci, 1983(23 ) :145 - 152.
  • 3Brickell E F, Odlyzko A M. Cryptanalysis: A Survey of Recent Results[ J]. Proc. IEEE,1988(76) :578 -593.
  • 4何敬民,卢开澄.背包公钥密码系统的安全性与设计[J].清华大学学报:自然科学版,1988,28(1):89-97.
  • 5王衍波.一种新的背包公钥密码体制[J].解放军理工大学学报(自然科学版),2001,2(2):29-33. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部