期刊文献+

Veljan-Korchmaros型不等式的稳定性 被引量:17

The Stability of Veljan-Korchmaros's Inequality
下载PDF
导出
摘要 关于Euclidean空间E^n(n≥2)中单形的几何不等式,由于支撑函数或径向函数的表达式很难找到,因此一般很难用Hausdorff度量或径向度量来度量两个单形的"偏差",使得涉及单形的几何不等式的稳定性的研究比较困难.利用单形棱长在确定单形时起决定性作用这一事实,引进了两个单形"偏正"度量的概念,从而较好地解决了单形偏正度量的问题,并建立了著名的Veljan-Korchmaros不等式的稳定性版本.作为推论,还导出了一系列Veljan-Korchmaros型不等式的稳定性版本. It is very difficult to find the formula of support function or radial function of simplices in Euclidean space E^n(n≥2),therefore the deviation metric of two simplices is difficult to realize by Hausdorff metric or radial metric.The study of stability of geometric inequalities of simplices is also difficult.In this paper,the problem of the deviation regular metric is solved by introducing the definition of the deviation regular metric of two sim- plices.The definition based on the fact that edge lengthes of simplex plays an important affect when someone define the simplex. Moreover, stability version of well-known Veljan- Korchmaros inequality is established. As application, some stability versions of a series of Veljan-Korchmaros models inequalities are established.
作者 马统一
机构地区 河西学院数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第3期399-412,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671117) 甘肃省教育厅科研基金(No.0709-03)资助的项目
关键词 EUCLIDEAN空间 单形 体积 棱长 超球 Veljan—Korchmaros不等式 稳定性 Euclidean space, Simplex, Volume, Edge-lengh, Hypersphere,Veljan-Korchmaros inequality, Stability
  • 相关文献

参考文献24

  • 1Bonnesen T., Problemes des Isoperimetres de Isepiphanes [M], Paris: Gauthier-Villars, 1929.
  • 2Minkowski H., Volumen und Oberflache [J], Math. Ann., 1903, 57:447-495 (Also publish as Ges. Abh. Band 2, Teubner. Leipzig, 1911:230-276).
  • 3Gardner R. J. and Vassallo S., Stability inequalities inthe dual Brunn-Minkowski theory [J], Journal of Mathematical Analysis and Applications, 1999, 231:568-587.
  • 4Goodey P. R. and Groemer H., Stability results for first order projection bodies [J], Poc. Amer. Math. Soc., 1990, 109:1103-1114.
  • 5Groemer H., Stanility theorems for projections of convex sets [J], Israel J. of Math., 1987, 60(2):177-190.
  • 6Groemer H., Stability properties of geometric inequalities [J], Amer, Math. Monthly, 1990, 97:382-394.
  • 7Groemer H. and Schneider R., Stability estimates for some geometric inequalities [J], Bull. London Math. Soc., 1991, 23:67-74.
  • 8Groemer H., Stability of geometric inequalities [M]// Handbook of Convexity, P. M. Gruber and J. M. Wills, eds., Amsterdam: North-Holland, 1993:125-150.
  • 9Schneider R., Convex Bodies: the Brunn-Minkowski Theory [M], Cambridge: Cambridge University Press, 1993.
  • 10何斌吾,李小燕,冷岗松.对偶Aleksandrov-Fenchel不等式的稳定性[J].数学学报(中文版),2005,48(6):1071-1078. 被引量:4

二级参考文献53

共引文献168

同被引文献145

引证文献17

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部