期刊文献+

基于小波变换的实际网络流量刻画 被引量:3

Depict of the Real Network Traffic Base on Wavelet Transform
下载PDF
导出
摘要 大量研究结果表明实际网络流量具有明显的尺度特性,在大尺度上表现出自相似,在小尺度上表现出多重分形。多重分形为刻画流量在小尺度上的奇异性提供了良好的数学框架,而小波变换对具有长程依赖性的流量起到了去相关的作用,因此有必要利用小波技术来研究多重分形。同时网络流量的多尺度特性也为研究人员提供了新的方法来探讨流量本质特征。本文基于小波技术研究实际网络流量,首先从全局尺度和局部尺度上分析流量特征,确定产生分形的时间。然后比较多媒体流量和数据型流量在不同尺度下所表现出的性能,并且给出了产生这种现象的原因。 Many research studies have proposed scaling of real network traffic has a notable effect on the network performance: the self-similar phenomena over large scale, the multi-fractal phenomena over small scale. As multi-fractal providing the upstanding frame of mathematics to depict the singularity of traffic over small scale, and the wavelet transform taking effect on un-correlation to the traffic which is the long range dependent, it is necessary to research the multi-fractal model base on wavelet technique. The multi-scale provides the new method to study the characteristic of traffic for researchers. The paper studied the real network traffic based on the wavelet technique, and analyzed the characteristic from global scale and local scale at first, then it could fix the time which generated fractal. At last, it found the difference of performance between multimedia traffic and data traffic in the different scale, and the reason of the phenomenon was given.
出处 《微计算机信息》 北大核心 2008年第18期86-88,共3页 Control & Automation
基金 西南交通大学科学研究基金项目(2005A03) 国家自然科学资金项目(90104002)
关键词 尺度 自相似 多重分形 小波 Scale Seff-Similar Multi-Fractual Wavelet
  • 相关文献

参考文献6

二级参考文献26

  • 1吴甘沙.基于测量和分析的Internet网络模拟及其实现[D].上海:复旦大学,2000.
  • 2[1]Feldmann,A.,Gilbert,A.C.,Willinger,W.Data networks as cascades:investigating the multifractal nature of Internet WAN traffic.In:Steenstrup,M.,ed.Proceedings of the ACM/SIGCOMM'98.New York:ACM Press,1998.42~55.
  • 3[2]Feldmann,A.,Gilbert,A.C.,Willinger,W.,et al.The changing nature of network traffic:scaling phenomena.Computer Communication Review,1998,28(2):5~29.
  • 4[3]Gilbert,A.C.,Willinger,W.,Feldmann,A.Scaling analysis of random cascades,with applications to network traffic.IEEE Transactions on Information Theory,1999,45(3):971~991.
  • 5[4]Goncaves,P.,Riedi,R.,Baraniuk,R.Simple statistical analysis of wavelet-based multifractal spectrum estimation.In:Abry,P.,Veitch,D.,eds.Proceedings of the 32nd Conference on Signals,Systems and Computers.Pacific Grove:CA,1998.109~121.
  • 6[5]Riedi,R.,Crouse,M.,Ribeiro,V.,et al.A multifractal wavelet model with applications to network traffic.IEEE Transactions on Information Theory,1999,45(3):991~1018.
  • 7[6]Taqqu,M.S.,Teverovsky,V.,Willlinger,W.Is network traffic self-similar or multifractal? Fractals,1997,5(1):63~73.
  • 8[7]Daubechies,L.Ten Lectures on Wavelets.Philadelphia,PA:Society of Industry and Applied Mathematics,1992.
  • 9[8]Floyd,S.NS.1998.http://www-mash.CS.Berkeley.EDU/ns.
  • 10NORROS I. On the use of fractional Brownian motions in the theory of connectionless networks[J]. IEEE JSAC, 1995, 13:953-962.

共引文献39

同被引文献17

  • 1陈丽静,舒勤.无线数据网络中的自相似性[J].微计算机信息,2005,21(1):193-194. 被引量:6
  • 2王欣,方滨兴.Hurst参数变化在网络流量异常检测中的应用[J].哈尔滨工业大学学报,2005,37(8):1046-1049. 被引量:14
  • 3W. E. Leland. Tans. on Networking [ J ]. IEEE/ACM 1994,2 (1) :1-15 .
  • 4TaqquMS. TeverovskyV. Onestimating the Intensity of Long-Range Dependent Infinite and Infinite Variance Time Series [ D ]. USA: Preprlnt Boston University, 1996.
  • 5Lawrence Berkeley National Laboratory. The Intemet Traffic Ar-ehive[EB/OL]. [2007-03-20] http:// ira. ee. lbl. gov/index, html.
  • 6P. Reiher, G. Prier, S. Michel, et al. Project D-WARD :DDoS Network Attack Recognition and Defense [ D ]. USA:UCLA, Aug. 2001.
  • 7Elfeky M,Aref W,elmangarmid A k.Periodicity DetEction in Time Series Databases [J].IEEE Transactions on Knowledge and Data Engineering,2005,17(7):875-887.
  • 8STEPHANE G.MALLAT A. Theory for Multiresolution Signal Decomposition:The Wavelet Representation[J].IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MA- CHINE INTELLIGENCE. 1989,11(7): 674-693.
  • 9闻新周,周露,王丹力,熊晓英.MATLAB神经网络应用设计[M].科学出版社.2002.1:304:309.
  • 10Skander Sohani.On the use of the wavelet decomposition for time series prediction.Nerocomputing,2002(3):48.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部