期刊文献+

基于PSO的新算法在库存分类中的应用

Inventory classification using a new algorithm based on PSO algorithm
下载PDF
导出
摘要 本文提出了基于粒子群(PSO)的训练ANN的新算法,以此为基础建立了对库存品进行ABC分类的模型。新算法充分结合了PSO与BP两者的优势,在训练过程中能同时优化权值以及神经元log-Sigmoid函数。实验结果表明,新算法是企业库存信息管理系统中进行决策预测的一种可行方法。 This paper presents a new ANN training algorithm based on PSO for ABC classification of stock keeping units (SKUs). The new algorithm combines the strengths of BP training algorithm and PSO-Gain training algorithm; it can both optimize the weights of network and the log-sigmoid function of the network during the training process. The experiment results show that the new algorithm is a viable way for decision-making in information management system of enterprise inventory.
出处 《微计算机信息》 北大核心 2008年第19期264-266,共3页 Control & Automation
基金 广东省软科学计划项目:中国珠三角高附加值产业发展战略研究(2005B70101042)
关键词 粒子群(PSO)算法 ABC分类 神经网络 反向传播算法 Particle swarm optimization ABC classification Neural network Back propagation
  • 相关文献

参考文献9

  • 1Flores Benito E, Whybark D. Multiple Criteria ABC Analysis [J]. International Journal of Operations & Production Management, 1986, Vol. 6 Issue 3, p38-46, 9p.
  • 2Partovi F Y, Burton Jonathan. Using the Analytic Hierarchy Process for ABC Analysis [J]. International Journal of Operations & Production Management, 1993, Vol. 13 Issue 9, p29-44, 16p
  • 3GUVENIR H A , EREL E. Multicriteria inventory classification using a genetic algorithm [J] European Journal of Operational Research, 1998, 105:29 - 37.
  • 4Partovi F Y, Anandarajan M. Classifying inventory using an artificial neural network approach [J] Computer & Industrial Engineering, 2002,41:389 - 404.
  • 5庄媛媛.基于粒子群的电力系统短期负荷预测[J].微计算机信息,2007,23(03X):9-11. 被引量:10
  • 6Shoujue Wang , Yangyang Liu. The Structure and Function of Neurons with Variable Nonlinear Transfer Function [J]. International Conference on Neural Networks and Brain, 2005, 1: 298-300.
  • 7Kennedy J. Stereotyping: improving particle swarm performance with cluster analysis [J]. Proceedings of the 2000 Congress on Evolutionary Computation . Volume 2, 16-19 July 2000 Page(s): 1507 - 1512 vol.2
  • 8Huiyuan Fan: A modification to particle swarm optimization algorithm, Engineering Computations, Vol.19, No.8, 2002, pp.970-989
  • 9Richard O Duda,Peter E Hart,David G Stork.模式分类[M].北京:机械工业出版社,2004:197-211.

二级参考文献9

  • 1高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:95
  • 2程其云,孙才新,张晓星,周湶,杜鹏.以神经网络与模糊逻辑互补的电力系统短期负荷预测模型及方法[J].电工技术学报,2004,19(10):53-58. 被引量:23
  • 3孙增圻等.智能控制理论与技术[M].北京:清华大学出版社.2000,1.
  • 4许东,吴铮.基于Matlab 6.X的系统分析与设计[M].西安:西安电子科技大学出版社,2002:77—85.
  • 5Franchini M.Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfallrunoff models[J].Hydrological Science Journal,1996,41(1):21-39.
  • 6Hornik K,Stinchcombc M,White H.Multilayer feed-forward networks are universal approximators[J].Neural Network,1989,2(5):359-366.
  • 7Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323(11):533-536.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[Al.Proceedings of IEEE International Conference on Neutral Networks[C].Australia:IEEE,1995.1942-1948.
  • 9刘福才,牛海涛,高秀伟.电力系统短期负荷预测的一种模糊建模方法[J].微计算机信息,2003,19(5):60-61. 被引量:5

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部