摘要
本文提出了基于粒子群(PSO)的训练ANN的新算法,以此为基础建立了对库存品进行ABC分类的模型。新算法充分结合了PSO与BP两者的优势,在训练过程中能同时优化权值以及神经元log-Sigmoid函数。实验结果表明,新算法是企业库存信息管理系统中进行决策预测的一种可行方法。
This paper presents a new ANN training algorithm based on PSO for ABC classification of stock keeping units (SKUs). The new algorithm combines the strengths of BP training algorithm and PSO-Gain training algorithm; it can both optimize the weights of network and the log-sigmoid function of the network during the training process. The experiment results show that the new algorithm is a viable way for decision-making in information management system of enterprise inventory.
出处
《微计算机信息》
北大核心
2008年第19期264-266,共3页
Control & Automation
基金
广东省软科学计划项目:中国珠三角高附加值产业发展战略研究(2005B70101042)